img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 128
всего попыток: 297
Задача опубликована: 12.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Рассматриваются все натуральные числа n от 1 до 2010 включительно. Для скольких из них число nn является квадратом целого числа?

Задачу решили: 60
всего попыток: 97
Задача опубликована: 01.12.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.

Задачу решили: 63
всего попыток: 143
Задача опубликована: 06.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.

Задачу решили: 136
всего попыток: 185
Задача опубликована: 12.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)? 

Задачу решили: 93
всего попыток: 262
Задача опубликована: 17.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xenia1996 (Ксения Шейнерман)

Мне надоели обычные игральные кубики, и я решила сделать свой. От обычного кубика мой отличается только тем, что на любых двух соседних гранях количество точек различается как минимум на 2. Какое наименьшее число точек мне понадобится? (Не забудьте о том, что на различных гранях должно быть различное количество точек, и не менее одной точки на каждой грани!)

Задачу решили: 93
всего попыток: 215
Задача опубликована: 21.03.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?

Задачу решили: 44
всего попыток: 86
Задача опубликована: 03.06.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.