Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
22
Найти диаметр окружности, описанной около шестиугольника, у которого длины каждой из 4-х сторон равна 15, каждой из оставшихся 2-х других сторон равна 7.
Задачу решили:
20
всего попыток:
20
В прямоугольном треугольнике АВС (угол С - прямой) из вершины А трисектрисы пересекают катет ВС в точках M и N так, что |СМ|=2, |MN|=3. Найдите квадрат гипотенузы АВ.
Задачу решили:
15
всего попыток:
38
В пифагоров треугольник вписаны две равных окружностей с целочисленным значением радиусов так, что они касались между собой, гипотенузой и одна из них с одним катетом, другая с другим катетом. Найти наименьший периметр треугольника.
Задачу решили:
29
всего попыток:
32
Найти площадь трапеции с основаниями 9 и 4, боковыми сторонами 3 и 4.
Задачу решили:
25
всего попыток:
26
Отрезок биссектрисы из вершины острого угла прямоугольного треугольника до точки пересечения биссектрис равен 5. Прилежащий к этой биссектрисе катет равен 7. Найти площадь треугольника.
Задачу решили:
26
всего попыток:
29
Найти отношение площади описанной окружности к сумме площадей вписанной и вневписанных окружностей прямоугольного треугольника.
Задачу решили:
10
всего попыток:
22
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
17
всего попыток:
25
На сторонах прямоугольного треугольника построены квадраты снаружи с целочисленными значениями площадей. Внутри треугольника вписан квадрат так, что одна из сторон лежит на гипотенузе, а две противоположные вершины лежат на катетах. Площадь квадрата,построенного на одного из катетов, равна 2, площадь внутреннего квадрата равна приблизительно 1 с наибольшим приближением. Найти площадь квадрата, построенного на гипотенузе.
Задачу решили:
23
всего попыток:
27
Центр окружности с радиусом 12 находится на гипотенузе,равной 35, и касается с катетами треугольника. Найти площадь треугольника.
Задачу решили:
21
всего попыток:
23
В треугольнике один из углов на 120° больше другого. Найти отношение длины высоты к длине биссектрисы, опущенных из вершины третьего угла.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|