Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
170
всего попыток:
208
В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?
Задачу решили:
63
всего попыток:
172
Даны две параллельные прямые, расстояние между которыми — целое число. На одной прямой находится точка A, а на другой — точки B, C, D, E (именно в таком порядке). Расстояние между любыми двумя из этих пяти точек — натуральное число, BC=4. Найдите наименьшее расстояние между A и E.
Задачу решили:
36
всего попыток:
193
Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?
Задачу решили:
66
всего попыток:
88
Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).
Задачу решили:
35
всего попыток:
200
В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой. Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей. Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.
Задачу решили:
25
всего попыток:
64
На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.
Задачу решили:
13
всего попыток:
21
На левом чертеже содержится большое количество различных n-угольников для различных n. На правом чертеже показан пример одного n-угольника для n=10. Найдите максимально возможное n. Ответ необходимо обосновать: показать, что многоугольник с найденным вами количеством сторон n существует, и доказать, что это n является максимальным.
Задачу решили:
24
всего попыток:
32
Дана ломаная M0M1M2M3M4M5M6M7. Все углы M0M1M2, M1M2M3, ..., M5M6M7 равны. Их величина такая, что, если бы все звенья были одинаковой длины, то ломаная была бы замкнута, образуя правильный семиугольник. Однако, длины звеньев другие: |M0M1| = 5 Соединив отрезком крайние точки M7 и M0, получим восьмиугольник. Найдите размер его наименьшего угла в градусах.
Задачу решили:
23
всего попыток:
32
На рисунке изображена 11-конечная звезда с концами в 11-и точках, определяющих на параболе y=x² десять дуг одинаковой длины, от точки (-2, 4) до точки (2, 4). Чему равна сумма углов концов звезды (в градусах)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|