Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Задачу решили:
22
всего попыток:
26
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда a0=1, a1=9, a2=51, a3=295, ... Найдите 23-й член последовательности (an).
Задачу решили:
19
всего попыток:
23
В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами. Проведены всевозможные хорды параболы, с концами в отмеченных точках. Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.
Задачу решили:
19
всего попыток:
25
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности. Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.
Задачу решили:
23
всего попыток:
29
В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.). При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.
Задачу решили:
14
всего попыток:
17
На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, … Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, … Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.
Задачу решили:
20
всего попыток:
25
Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.
Задачу решили:
12
всего попыток:
17
На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности. Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность 1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника.
Задачу решили:
26
всего попыток:
35
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|