Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
72
Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей.
Задачу решили:
43
всего попыток:
67
Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в ответе укажите их сумму.
Задачу решили:
44
всего попыток:
47
Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке. Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.
Задачу решили:
51
всего попыток:
68
Книга сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Все страницы книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради равна 338. Сколько страниц в этой книге?
Задачу решили:
48
всего попыток:
63
Трехзначное число равно сумме его первой цифры, квадрата второй цифры и куба третьей цифры. Найдите все трехзначные числа, обладающие таким свойством. В ответе укажите их сумму.
Задачу решили:
37
всего попыток:
53
Плоская металлическая фигура имеет форму трапеции. Докажите, что её центр тяжести лежит на отрезке, соединяющем середины оснований трапеции. Выясните, в каком отношении (меньшее число к большему) центр тяжести трапеции делит этот отрезок, если основания трапеции равны 1 и 2.
Задачу решили:
66
всего попыток:
106
Гимнасты одного веса построили пирамиду, изображенную на рисунке. Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.
Задачу решили:
67
всего попыток:
77
Решите уравнение 1+2+3+...+n=1*2*3*...*m, где n и m неравные натуральные числа. В ответе укажите произведение nm.
Задачу решили:
26
всего попыток:
46
Правильный шестиугольник со стороной 6, разбит на единичные треугольники, и отмечены вершины всех единичных треугольников. Найти число всех правильных шестиугольников, которые можно построить на заданных точках. Три из них изображены на рисунке.
Задачу решили:
32
всего попыток:
85
На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка. Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|