img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4992
всего попыток: 6957
Задача опубликована: 28.02.09 17:40
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: sibdoma (Павел Сивак)

Пете не хватает на мороженое 19-ти копеек, а Васе — одной. Если они сложат свои деньги вместе, то на мороженое все равно не хватит. Сколько копеек стоит мороженое?

Задачу решили: 2914
всего попыток: 3530
Задача опубликована: 01.03.09 12:36
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kombo

Студент за 5 лет учения сдал 31 экзамен. В каждом следующем году он сдавал больше экзаменов, чем в предыдущем, а на пятом курсе сдал втрое больше экзаменов, чем на первом курсе. Сколько экзаменов он сдал на четвертом курсе?

Задачу решили: 2661
всего попыток: 4769
Задача опубликована: 05.03.09 16:35
Прислал: demiurgos img
Источник: "Квант", 1987
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: silentsquall

Однажды на лестнице я нашел тетрадь, в которой было написано сто следующих утверждений:

1. «В этой тетради ровно одно неверное утверждение.»

2. «В этой тетради ровно два неверных утверждения.»

3. «В этой тетради ровно три неверных утверждения.»

...............................................................

100. «В этой тетради ровно сто неверных утверждений.»

Утверждение под каким номером является верным?

Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 1785
всего попыток: 4194
Задача опубликована: 25.03.09 19:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: silentsquall

Улитка за 6 минут залезает с постоянной скоростью вверх по столбику на 30 см, а следующие 4 минуты она отдыхает и сползает под собственной тяжестью на 15 см. Высота столбика 1 метр, а наверху лежит конфета. Через сколько минут улитка её достанет?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 1469
всего попыток: 2235
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: sibdoma (Павел Сивак)

Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?

Задачу решили: 1313
всего попыток: 3356
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Источник: Олимпиада Ростовской области
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Oregu (Oleg Prophet)

В пруду плавают 30 голодных щук. Есть больше нечего, и им приходится пожирать друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных — неважно). Какое наибольшее число щук смогут насытиться?

+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.