Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
77
всего попыток:
149
В круге радиуса 10 см на расстоянии 5 см от его центра отмечается точка. Через неё проводятся две перпендикулярные прямые, одна из которых проходит через центр круга. Затем обе прямые поворачиваются на 30° относительно отмеченной точки против часовой стрелки. При этом хорды, лежащие на прямых, заметают часть круга, показанную на рисунке. Сколько см2 составляет её площадь? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
23
всего попыток:
28
В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)
Задачу решили:
56
всего попыток:
263
Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.
Задачу решили:
64
всего попыток:
251
Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все квадраты? (Т.е. в периметре каждого квадрата произвольного размера от 1×1 до 8×8 не должно хватать хотя бы одной спички.)
Задачу решили:
48
всего попыток:
174
Из 144 спичек сложили квадрат 8×8, состоящий из 64 маленьких квадратиков 1×1. Какое наименьшее число спичек нужно убрать, чтобы разрушить все прямоугольники? (Т.е. в периметре каждого прямоугольника произвольного размера не должно хватать хотя бы одной спички.)
Задачу решили:
50
всего попыток:
164
Деревянный куб с ребром 10 см требуется полностью оклеить цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно. (Бумагу можно клеить в несколько слоёв, сгибать где угодно, но сгибы должны быть прямыми.)
Задачу решили:
92
всего попыток:
420
Длины двух высот треугольника равны 12 и 19. Сколько различных целых значений может принимать длина третьей высоты?
Задачу решили:
74
всего попыток:
396
Длины трёх сторон четырёхугольника равны 25, 33 и 39. Найдите длину четвёртой стороны, при которой площадь четырёхугольника максимальна.
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Задачу решили:
99
всего попыток:
292
Играя в морской бой, Саша стремится расположить все свои корабли внутри прямоугольника наименьшей площади. Сколько клеток составляет площадь такого прямоугольника? (В морской бой играют на поле 10×10, на котором нужно расположить 10 кораблей — один 4×1, два 3×1, три 2×1 и четыре 1×1 — так, чтобы они не соприкасались ни сторонами, ни углами.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|