img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 618
всего попыток: 766
Задача опубликована: 12.04.09 00:44
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Father

Если от некоторого трехзначного числа отнять 6, то разность разделится на 7, если отнять 7, то разность разделится на 8, а если отнять 8, то разность разделится на 9. Определите это число.

Задачу решили: 677
всего попыток: 1803
Задача опубликована: 12.04.09 00:52
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: eterny

На каждом километре шоссе, соединяющего города А и Б стоит столбик с табличкой, на одной стороне которой написано, сколько километров до А, на другой — до Б. Известно, что на каждом столбике сумма всех цифр равна 17. Какова длина шоссе?

Задачу решили: 138
всего попыток: 1031
Задача опубликована: 12.04.09 09:55
Прислал: demiurgos img
Источник: Сообщено А.Г.Беляевым
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Вам нужно узнать задуманное число от 1 до 2000. Можно задавать вопросы, на которые тот, кто задумал число, отвечает либо «да», либо «нет». Какое минимальное число вопросов нужно задать, чтобы достоверно определить задуманное число, если отвечающий может и солгать, но не более одного раза?

+ 52
+ЗАДАЧА 53. Хитрая улитка I (Н.Н.Константинов)
  
Задачу решили: 202
всего попыток: 752
Задача опубликована: 12.04.09 10:03
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Улитка ползет вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое максимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 201
всего попыток: 1035
Задача опубликована: 12.04.09 10:07
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

На доске выписаны подряд целые числа от 0 до 1024 — всего 1025 чисел. Двое играют в такую игру. Сначала первый стирает 512 чисел, потом второй стирает 256 чисел, потом первый 128, потом второй 64 и т.д. На десятом ходу второй стирает одно число, после чего первый выплачивает ему разницу между двумя оставшимися числами. Какую сумму он получит при наилучшей стратегии обоих игроков?

Задачу решили: 728
всего попыток: 1303
Задача опубликована: 12.04.09 10:45
Прислал: demiurgos img
Источник: "Квант", 1978
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: silentsquall

11 человек пришли в гости в галошах. Уходили они по одному, и каждый спьяну надевал первую попавшуюся пару галош, в которую мог влезть (т.е. не меньшего размера, чем его собственная). Каково наибольшее число гостей, которые не смогли надеть галоши?

Задачу решили: 211
всего попыток: 630
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Из 220 спичек сложили квадрат 10×10, состоящий из 100 маленьких квадратиков 1×1. Фигуру из четырёх спичек, сходящихся в одной точке, будем называть крестиком. Какое наименьшее число спичек нужно убрать, чтобы не осталось ни одного крестика?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.