img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 277
всего попыток: 1082
Задача опубликована: 25.03.09 18:36
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

У куба 4 большие диагонали. Сколько их различных перестановок осуществляются вращениями куба?

Задачу решили: 256
всего попыток: 940
Задача опубликована: 25.03.09 18:23
Прислал: demiurgos img
Источник: В.И. Арнольд "Задачи для детей от 5 до 15 лет...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Hasmik33

Сколькими способами можно раскрасить грани одинаковых кубиков шестью красками (каждая грань одного цвета, а все грани разных цветов) так, чтобы никакие два из получившихся раскрашенных кубиков не были одинаковыми, т.е. не переходили один в другой ни при каких вращениях?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 1469
всего попыток: 2235
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: sibdoma (Павел Сивак)

Сколько нужно провести матчей по олимпийской системе (проигравший вылетает), чтобы из 30 футбольных команд определить победителя?

Задачу решили: 116
всего попыток: 395
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?

Задачу решили: 1313
всего попыток: 3356
Задача опубликована: 28.03.09 15:19
Прислал: demiurgos img
Источник: Олимпиада Ростовской области
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Oregu (Oleg Prophet)

В пруду плавают 30 голодных щук. Есть больше нечего, и им приходится пожирать друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных — неважно). Какое наибольшее число щук смогут насытиться?

Задачу решили: 846
всего попыток: 1697
Задача опубликована: 28.03.09 16:51
Прислал: demiurgos img
Источник: Московская олимпиада школьников по математике...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xardas (Алексей Кузнецов)

Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?

Задачу решили: 319
всего попыток: 728
Задача опубликована: 06.04.09 23:48
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?

(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.