Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
78
всего попыток:
203
На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?
Задачу решили:
86
всего попыток:
143
Два самолёта летят прямолинейными курсами с постоянными скоростями. В 12-00 расстояние между ними составляло 200 км, в 12-07 — 150 км, а в 12-21 — 130 км. Сколько км составляло наименьшее расстояние между самолётами?
Задачу решили:
46
всего попыток:
155
Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.
Задачу решили:
72
всего попыток:
256
Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
50
всего попыток:
142
Две треугольные пирамиды центрально симметричны относительно общей вершины, объём каждой пирамиды — 2010. Найдите объём фигуры, состоящей из середин всех отрезков, концы которых принадлежит разным пирамидам.
Задачу решили:
46
всего попыток:
100
Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?
Задачу решили:
20
всего попыток:
132
Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|