img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 71
всего попыток: 209
Задача опубликована: 17.05.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?

Задачу решили: 90
всего попыток: 242
Задача опубликована: 31.05.10 00:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Сад имеет форму треугольника со сторонами 130, 140 и 150 м. Сумма трёх расстояний от домика садовника до каждой из сторон сада составляет S м. Найдите наименьшее значение S.

Задачу решили: 113
всего попыток: 437
Задача опубликована: 02.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Четыре друга — Алёша, Боря, Валера и Гриша — бегали на лыжах по кругу. Алёша бежал быстрее Бори, Боря быстрее Валеры, а Валера быстрее Гриши. Стартовали и финишировали друзья одновременно, но Алёша 1 раз обогнал Борю, Боря 1 раз обогнал Валеру, а Валера 1 раз обогнал Гришу. Сколько раз Алёша обогнал Гришу?

Задачу решили: 76
всего попыток: 213
Задача опубликована: 16.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

В прямоугольном треугольнике точка P лежит на катете BC, а точка Q — на гипотенузе AB. Найдите наименьшую возможную длину незамкнутой ломаной APQ, если известно, что AC=700, BC=2400.

Задачу решили: 69
всего попыток: 128
Задача опубликована: 23.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.

Задачу решили: 65
всего попыток: 147
Задача опубликована: 25.06.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: min

Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)

Задачу решили: 164
всего попыток: 347
Задача опубликована: 30.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.

Задачу решили: 100
всего попыток: 214
Задача опубликована: 09.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?

Задачу решили: 78
всего попыток: 203
Задача опубликована: 11.08.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?

Задачу решили: 46
всего попыток: 155
Задача опубликована: 03.01.11 08:00
Прислал: demiurgos img
Источник: по мотивам Всероссийской олимпиады
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.