Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
46
всего попыток:
100
Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?
Задачу решили:
20
всего попыток:
132
Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.
Задачу решили:
91
всего попыток:
170
Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?
Задачу решили:
396
всего попыток:
643
Сосчитайте за 10 секунд количество букв F в следующей английской фразе: FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY COMBINED WITH THE EXPERIENCE OF YEARS.
Задачу решили:
76
всего попыток:
185
Сколько целых положительных решений имеет уравнение:
Задачу решили:
91
всего попыток:
139
Внутри прямоугольника со сторонами 20 и 30 отмечена точка . Найдите минимальное значение выражения .
Задачу решили:
34
всего попыток:
63
На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?
Задачу решили:
135
всего попыток:
159
Известно, что p, 4p2+1 и 6p2+1 — простые числа. Найдите наибольшее значение p.
Задачу решили:
77
всего попыток:
186
В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|