Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
152
всего попыток:
383
Решите уравнение . В ответе укажите количество его целых решений.
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
86
всего попыток:
143
Два самолёта летят прямолинейными курсами с постоянными скоростями. В 12-00 расстояние между ними составляло 200 км, в 12-07 — 150 км, а в 12-21 — 130 км. Сколько км составляло наименьшее расстояние между самолётами?
Задачу решили:
72
всего попыток:
256
Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?
Задачу решили:
76
всего попыток:
185
Сколько целых положительных решений имеет уравнение:
Задачу решили:
34
всего попыток:
63
На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?
Задачу решили:
135
всего попыток:
159
Известно, что p, 4p2+1 и 6p2+1 — простые числа. Найдите наибольшее значение p.
Задачу решили:
130
всего попыток:
267
Перед Вами в ряд лежат 9 арбузов общим весом 70 кг. Для каждого арбуза (кроме первого и последнего) известен общий вес двух его соседей. У какого наибольшего числа арбузов можно однозначно определить вес?
Задачу решили:
69
всего попыток:
191
На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?
Задачу решили:
88
всего попыток:
111
Пусть — многочлен от переменной с чётными целыми коэффициентами, и — такие целые числа, что . Найдите наибольшее возможное значение разности .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|