img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1160
всего попыток: 7556
Задача опубликована: 28.02.09 17:40
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vlad_Malin (Владислав Малин)

Сколько оборотов в сутки делает прямая, содержащая биссектрису угла между часовой и минутной стрелками? (Если угол нулевой, то эта прямая проходит по стрелкам, если развёрнутый — то перпендикулярна им.)

Задачу решили: 882
всего попыток: 1643
Задача опубликована: 04.03.09 15:51
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Serj129 (Сергей Панченко)

Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. На сколько процентов скорость отца больше скорости сына?

Задачу решили: 1936
всего попыток: 3229
Задача опубликована: 04.03.09 11:05
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Собака — 3,
лошадь — 5,
свинья — 3,
кошка — 3,
петух — 8,
корова — 2,
утка — ?

Задачу решили: 647
всего попыток: 2130
Задача опубликована: 07.03.09 11:00
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Играют двое, один из них загадывает 5 натуральных двузначных чисел x1, x2, x3, x4, x5. Второму разрешается спрашивать, чему равна сумма

a1·x1+a2·x2+a3·x3+a4·x4+a5·x5,

где a1, a2, a3, a4, a5 — любые целые числа. Какое наименьшее число вопросов потребуется отгадывающему, чтобы узнать задуманные числа?

Задачу решили: 372
всего попыток: 1323
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 567
всего попыток: 637
Задача опубликована: 20.03.09 11:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 34

Найти разность (1+2+3+...+n)2 − (13+23+33+...+n3) при n=200910.

Задачу решили: 756
всего попыток: 1923
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 648
всего попыток: 2434
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 837
всего попыток: 1682
Задача опубликована: 28.03.09 16:51
Прислал: demiurgos img
Источник: Московская олимпиада школьников по математике...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Xardas (Алексей Кузнецов)

Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?

Задачу решили: 316
всего попыток: 720
Задача опубликована: 06.04.09 23:48
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?

(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.