img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: mark5 решил задачу "Снова про 14" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 140
всего попыток: 168
Задача опубликована: 23.12.11 08:00
Прислала: Margosha img
Источник: Математическая олимпиада Швеции
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Найти наибольшее число R, при котором система уравнений: 

x-4y=1
Rx+3y=1

имеет решение в целых числах x, y. 

Задачу решили: 46
всего попыток: 65
Задача опубликована: 11.01.12 08:00
Прислал: leonid img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество действительных решений уравнения f(f(x))=x, где функция f(x)=x3 - 2x2 + 6x - 18.

Задачу решили: 99
всего попыток: 142
Задача опубликована: 25.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).

Задачу решили: 103
всего попыток: 143
Задача опубликована: 08.02.12 08:00
Прислал: Yhlas img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: VFChistov (Виктор Чистяков)

Решите уравнение в натуральных числах: x!+y!+z!=u!. В ответе укажите сумму всех возможных вариантов x+y+z+u.

Задачу решили: 61
всего попыток: 115
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 86
всего попыток: 179
Задача опубликована: 01.03.12 08:00
Прислал: levvol img
Источник: По мотивам задачи И.Ньютона
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа.  Сосед сообщает ему, что из предыдущего опыта известно,  что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров  поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище? 

Задачу решили: 87
всего попыток: 99
Задача опубликована: 09.03.12 08:00
Прислал: Yhlas img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

f(x)=4x/(4x+2)

S=f(0)+f(1/n)+f(2/n)+…+f((n-1)/n)+f(1)=? (n-нечетное)

Чему равно S при n=2011?

Задачу решили: 138
всего попыток: 200
Задача опубликована: 30.03.12 08:00
Прислал: kolkingen img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: 0Vlas

Вы пошли в супермаркет за дисками. Один диск стоит 1 доллар, но при приобретении X дисков (X < 100) вы получаете скидку X %. Когда вы пришли домой, вам сказал брат: "Ты заплатил за диски наибольшую возможную сумму денег!". Сколько долларов вы заплатили?

Задачу решили: 86
всего попыток: 209
Задача опубликована: 11.05.12 08:00
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Сколько целых пар x и y удовлетворяет системе неравенств
y≥0
y ≤ 900 - x2?

Задачу решили: 159
всего попыток: 182
Задача опубликована: 14.05.12 08:00
Прислал: kolkingen img
Источник: Международный конкурс "Кенгуру"
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ilam

Дан ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9. Какую цифру нужно выбросить из данного ряда, чтобы  наименьшее общее кратное оставшихся чисел было самым маленьким из возможных?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.