img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec решил задачу "Три пентамино - 3" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 30
Задача опубликована: 15.08.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Совершенные числа равны сумме своих делителей (исключая само число). Полусовершенными числами назовем натуральные числа, которые на единицу больше или меньше суммы своих делителей. Например, 2 или 4. Найдите сумму всех полусовершенных чисел, меньших 109.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 22.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим число
G(n) = (n2)!/(n!)n,
где n – натуральное. Несложно показать, что G(n) – тоже натуральное число.
Например, G(3)=1680. Разложим 1680 на простые множители, а затем их сложим:

1680=24×3×5×7=2×2×2×2×3×5×7,
и
2 + 2 + 2 + 2 + 3 + 5 +7 = 23.
Таким образом, сумма простых множителей числа G(3) равна 23.

Найдите сумму простых множителей числа G(4444).

Задачу решили: 2
всего попыток: 5
Задача опубликована: 20.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Для совершенных чисел n, как вы, вероятно, знаете, σ(n) = 2n. Поэтому назовем коэффициентом совершенства отношение p(n)=σ(n) / n. У совершенных чисел коэффициент совершенства равен 2.
Найдите сумму таких натуральных n < 1018, у которых коэффициент совершенства является несократимой дробью со знаменателем 3.

Задачу решили: 6
всего попыток: 10
Задача опубликована: 21.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Напомним, что функция Эйлера φ(n) определена для натуральных аргументов n и равна количеству натуральных чисел, не больших n и взаимно простых с ним.
6227180929 является наименьшим числом, для которых φ(n)=13!
Найдите сумму всех n, для которых φ(n)=13!

Задачу решили: 4
всего попыток: 8
Задача опубликована: 24.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дано множество простых чисел, не превышающих 5000:
S = {2, 3, 5, ..., 4999}
Найдите, сколько оно содержит подмножеств, у которых количество элементов нечетно, а сумма элементов является простым числом.
В качестве ответа укажите последние 16 знаков результата.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество непустых подмножеств множества

{1250250, 2250249, 3250248,... , 2502492, 2502501},

у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 19.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Определим f(n) как сумму факториалов цифр числа n. Например, f(342) = 3! + 4! + 2! = 32.
Определим sf(n) как сумму цифр числа f(n). Например, sf(342) = 3 + 2 = 5.
Определим g(i) как наименьшее натуральное n, для которого sf(n) = i. Так, sf(342) = 5 и sf(25) = 5, и при этом можно проверить, что  наименьшим n, для которого sf(n) = 5 является число 25, поэтому g(5) = 25.
Определим sg(i) как сумму цифр числа g(i). Например, sg(5) = 2 + 5 = 7.
Для некоторых i значения sg(i) совпадают. Например, sg(5)=sg(10)=7;
Можно проверить, что сумма различных значений sg(i) при 1 ≤i ≤20 равна 108.
Найдите сумму различных значений sg(i) при 1 ≤i≤150.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность g(k) задана следующим образом:
g(k) = 1, при 0 ≤k ≤1999
g(k)= g(k-2000) + g(k-1999), при k ≥2000.
Найдите остаток от деления суммы g(100)+ g(101)+ g(102)+…+ g(1018) на 12344321.

Задачу решили: 6
всего попыток: 9
Задача опубликована: 23.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число достижимым, если оно является значением выражения, построенного по следующим правилам:
1. В выражении должны быть использованы все цифры от 1 до 9 в порядке возрастания, каждая ровно по одному разу.
2. Несколько последовательных цифр могут быть объединены в десятичное число, например, цифры 2,3 и 4 могут быть объединены в число 234.
3. Можно использовать четыре арифметических действия, каждое из них может быть использовано любое количество раз или не использовано вовсе.
4. Пользоваться унарным минусом нельзя
5. Можно  использовать любое количество вложенных пар скобок для задания порядка действий.
Например, число 42 достижимо, поскольку  (1/23) * ((4*5)-6) * (78-9) = 42.

Сколько всего существует достижимых чисел?

Задачу решили: 3
всего попыток: 5
Задача опубликована: 30.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим следующую игру, рассчитанную на двух участников.
Первоначально на игровом столе находится три кучки камней.
Игроки ходят по очереди. При каждом ходе игрок может взять один или несколько камней. Однако, если он берет камни из нескольких кучек, он должен взять из каждой кучки одинаковое количество камней.
Другими словами, игрок выбирает некоторое N>0 и забирает:

  • N камней из одной кучки;
  • или N камней из любых двух кучек (всего 2N камней);
  • или по N камней из каждой кучки (всего 3N камней).

Проигрывает тот, кому камней не досталось.
Выигрышной называется позиция, когда первый игрок при правильной стратегии наверняка выигрывает. Например, позиции (0,0,13), (0,11,11) и (5,5,5) являются выигрышными, а первый игрок может выиграть одним ходом.
Проигрышной называется позиция, когда второй игрок при правильной стратегии наверняка выигрывает. Например, позиции (0,1,2) и (1,3,3) являются проигрышными, и как бы первый игрок не походил, второй всегда может выиграть.
Обозначим через x,y и z количество камней в трех кучках.
Существует 1184 проигрышных позиции при 0 ≤ x < y < z ≤ 100.
Найдите количество проигрышных позиций при 0 ≤ x < y < z ≤ 1000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.