Лента событий:
tubaki решил задачу "Пять дробей" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
30
У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?
Задачу решили:
14
всего попыток:
28
Точки P(x1, y1) и Q(x2, y2) с целочисленными координатами вместе с точкой начала координат O(0, 0) образуют треугольник OPQ. Для 0 ≤ x1, y1, x2, y2 ≤ 2 всего 12 треугольников с углом 45 градусов. Вот координаты соответствующих им точек P и Q: (0, 1) (1, 0) Треугольники где изменен только порядок точек P и Q, считаются одинаковыми. Сколько различных треугольников с углом 45 градусов, если координаты точек находятся в пределах: 0 ≤ x1, y1, x2, y2 ≤ 100?
Задачу решили:
21
всего попыток:
33
Рассмотрим два треугольника: X(-175,41), Y(-421,-714), Z(574,-645)
На плоскости заданы 20 точек. Их координаты приведены в таблице:
Сколько треугольников с вершинами в данных точках содержат начало координат?
Задачу решили:
13
всего попыток:
34
На плоскости нарисована пятиконечная звезда с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?
Задачу решили:
4
всего попыток:
12
На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?
Задачу решили:
31
всего попыток:
49
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.
Задачу решили:
7
всего попыток:
9
Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:
Задачу решили:
7
всего попыток:
11
Ленточным прямоугольником толщины d назовем множество таких точек некоторого прямоугольника, расстояние которых до границы указанного прямоугольника не превышает d. Будем рассматривать только ленточные прямоугольники, стороны и толщина которых выражаются натуральными числами, а удвоенная толщина меньше каждой из сторон. Сколько существует различных ленточных прямоугольников, площадь которых не превышает 1000000?
Задачу решили:
9
всего попыток:
13
Назовем квадратной рамкой плоскую фигуру, представляющую собой квадрат с вырезанным в нем квадратным отверстием, симметричную относительно вертикальной и горизонтальной осей и составленную из единичных квадратов.
Задачу решили:
10
всего попыток:
14
У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|