img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH решил задачу "Три пентамино - 3" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 73
Задача опубликована: 03.06.09 11:19
Прислал: admin img
Источник: в ред. А.Лунева
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям:

a1 делится на 1;

a1a2 делится на 2;

a1a2a3 делится на 3;

...

a1a2a3...a24 делится на 24.

Задачу решили: 57
всего попыток: 106
Задача опубликована: 29.07.09 11:30
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Gh0stik

Чему равна сумма цифр находящихся на местах с простыми номерами в десятичной записи числа 210000?

Задачу решили: 32
всего попыток: 49
Задача опубликована: 26.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Темы: алгебраimg

Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).

Задачу решили: 3
всего попыток: 12
Задача опубликована: 26.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На складах 'A' и 'B' хранятся деликатесы в следующих количествах:

Наименование товара Склад 'A',
кол-во упаковок
Склад 'B',
кол-во упаковок
Белужья икра 5248 640
Рождественский кекс 1312 1888
Окорок 2624 3776
Марочный портвейн 5760 3776
Шампанские трюфели 3936 5664

Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом.

<page-break/>

Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Однажды хозяин решил проанализировать сохранность продуктов, используя два вида показателей:
• Доля испорченных для каждого из пяти видов продуктов и для каждого склада, которая рассчитывалась как отношение количества испорченного продукта на данном складе к количеству данного продукта на данном складе.
• Общая доля испорченных продуктов для каждого склада, которая рассчитывалось как общее количество испорченных продуктов на складе к общему количеству всех продуктов на данном складе.
Выяснилось, что на складе 'B' доля испорченных продуктов каждого вида больше, чем на складе 'A'. При этом оказалось, что доля испорченных для каждого из пяти продуктов на складе B отличалась от доли испорченных для того же продукта на складе A одним и тем же множителем m>1, т.е. отношение долей испорченных продуктов для каждого из продуктов было одинаково.
Но самым удивительным было то, что общая доля испорченных продуктов на складе 'A' была больше, чем на складе 'B', и их отношение также было в точности равно m.
Оказывается, что эта странная ситуация не уникальна. Она может возникать при 35 различных значениях m>1, и при этом наименьшее общее количество испорченных продуктов на обоих складах вместе равно 215.
Найдите наибольшее количество упаковок, которое могло испортиться на обоих складах вместе в подобной удивительной ситуации.

Задачу решили: 8
всего попыток: 16
Задача опубликована: 31.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это

1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15.

Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3.

Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 07.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11.
Можно показать, что коэффициент несократимости

R(d)= φ(d)/(d – 1), где φ – функция Эйлера.

Теперь определим коэффициент сократимости C(d):

C(d)= (d-φ(d))/(d – 1 )
Например, для простых чисел p

C(p)=1/(p-1)

Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Найдите количество составных d, не превышающих 2×1011, для которых C(d) – дробь с числителем, равным единице.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 01.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:

 

Например, тройка (2,1,5) является тройкой Кардано.
Найдите, сколько существует троек Кардано при a, b и  c меньших, чем 30 000 000.

Задачу решили: 2
всего попыток: 3
Задача опубликована: 26.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Теперь рассмотрим следующий алгоритм вычисления округленного квадратного корня, фактически являющийся модификацией формулы Герона для целочисленной арифметики:
Пусть d — количество знаков числа n,
x0 = 2?10(d-1)⁄2 для нечетных d, и
x0 = 7?10(d-2)⁄2 для четных d.
Будем вычислять последовательность xk
xk+1=[(xk+{n/xk})/2]
до тех пор, пока последовательные значения не совпадут: xk+1 = xk. Скобки [] - означают округление вниз, а {} - округление вверх.
Для примера вычислим округленный квадратный корень из 4321. Это четырехзначное число, поэтому x0 = 7 ? 10(4-2)⁄2 = 70.
x1=[(70+{4321/70})/2]=66
x2=[(66+{4321/66})/2]=66
Поскольку  x2 = x1,  двух итераций  оказалось достаточно, и мы нашли округленный квадратный корень, равный 66 (это правильный результат, поскольку квадратный корень из 4321 примерно равен 65,7343137…)
Описанный метод оказался удивительно эффективным. Например, для вычисления округленных квадратных корней из пятизначных чисел требуется не более 5 итераций. Существует всего 82 пятизначных числа (например, число 10097), для которых алгоритм требует пяти шагов.
Найдите максимальное число итераций, которое может потребоваться для вычисления округленного квадратного корня из 14-значного числа. В качестве ответа укажите количество 14-значных чисел, для вычисления округленного квадратного корня из которых требуется найденное максимальное число шагов. 

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 02.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Функция Аккермана A(m,n) рекурсивно задается для неотрицательных целых чисел m и n следующим образом:

A(m, n) = \left\{ \begin{array}{rrrrr}
n+1, m=0 \\
A(m-1, 1), m>0, n=0 \\
A(m-1, A(m, n-1)), m>0, n>0
\end{array}

Например, A(1, 0) = 2, A(2, 2) = 7 и A(3, 4) = 125.

Чему равен остаток от деления \sum A(m,n) на 148, где 0 \le m,n \le 6?

 
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.