img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 3
Задача опубликована: 06.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Построим последовательность случайных чисел sn при помощи генератора Блюм-Блюма-Шуба:
s0=14025256
sn+1=sn2 mod 20300713,
и запишем полученные числа s0 s1 s2… подряд в одну бесконечную строку w: w=14025256741014958470038053646…


Для натурального числа k выберем все подстроки строки w, для которых сумма цифр равна k и обозначим через p(k) положение самой левой цифры в этих подстроках. Если не найдется ни одной подстроки с суммой цифр, равной k, будем считать, что p(k)=0.

Например,
Сумму цифр k=7 имеют подстроки 1402, 025, 25, 52, 25, 7 …, начинающиеся, соответственно, с 1, 3, 4, 5, 6, 9 … позиции. Поэтому p(7)=1.
Сумму цифр k=11 имеют подстроки 4025, 56, 74, 47, 470, 4700, 0038 …, начинающиеся, соответственно, со 2, 7, 9, 18, 18, 18, 20 … позиции. Поэтому p(11)=2.
Сумму цифр k=20 имеют подстроки 025256, 25256, 2567, 101495 …, начинающиеся, соответственно, со 3, 4, 6, 11 … позиции. Поэтому p(20)=3.

Можно показать, что среди значений p(k) для 0<k≤103 найдется 614 нечетных и 386 четных.
А сколько нечетных значений p(k) найдется для  0<k≤2•1015?

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 13.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Рассмотрим многочлен N(p,q) = ΣTn*pn, где  p, q - натуральные числа, сумма берется для 0≤n≤q,  а коэффициенты Tn получены с помощью генератора случайных чисел:
S0 = 290797
Sn+1 = Sn2 mod 50515093
Tn = Sn mod p
Пусть Nfac(p,q) - факториал числа N(p,q), а N0(p,q) - количество нулей, на которое заканчивается число Nfac(p,q).
Например N0(5,10) = 735554.
Найдите остаток от деления N0(5,107) на 525.

Задачу решили: 10
всего попыток: 11
Задача опубликована: 03.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде

p = (x4-y4)/(x3+ y3), где x и y — натуральные числа.

Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.

 

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 15.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89.

Такую сумму называют представлением Цекендорфа.

Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3.

z(n) для всех шестизначных n равна 7236250.

Найдите ∑z(n) для всех 17-значных n.

Задачу решили: 2
всего попыток: 5
Задача опубликована: 22.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

Лёва и Петя поспорили, у кого лучше память, и решили проверить. Для этого они обзавелись генератором случайных чисел, настроили его на получение случайных чисел от 1 до 10 и стали соревноваться, кто больше чисел запомнит. По условию игры участник получает очко, если очередное число все еще хранится в его памяти. Побеждает тот, кто набрал больше очков.

По ходу дела выяснилось, что и Лёва, и Петя могут удержать в голове не более пяти разных чисел. Если игрок уже помнит пять чисел, то чтобы запомнить следующее, не содержащееся к этому моменту в его памяти, он вынужден забыть одно из имеющихся. Однако оказалось, что забывание происходит несколько по-разному:

  • Лёва забывает то число, которое не выдавалось генератором наиболее продолжительное время
  • Петя забывает то число, которое первым попало в память.

В начале соревнования память игроков свободна.

Вот пример начала игры:

Тур

Очередное число

Память Лёвы

Очки Лёвы

Память Пети

Очки Пети

1

1

1

0

1

0

2

2

1,2

0

1,2

0

3

4

1,2,4

0

1,2,4

0

4

6

1,2,4,6

0

1,2,4,6

0

5

1

1,2,4,6

1

1,2,4,6

1

6

8

1,2,4,6,8

1

1,2,4,6,8

1

7

10

1,4,6,8,10

1

2,4,6,8,10

1

8

2

1,2,6,8,10

1

2,4,6,8,10

2

9

4

1,2,4,8,10

1

2,4,6,8,10

3

10

1

1,2,4,8,10

2

1,4,6,8,10

3

Обозначим количество очков, которые Лёва и Петя набрали после 50 туров через L и P, соответственно. Найдите математическое ожидание величины (L-P)2, результат умножьте на 108 и округлите до ближайшего целого.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 26.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек.

Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203.

Можно подсчитать, что 

f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443

Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000

Задачу решили: 2
всего попыток: 3
Задача опубликована: 31.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

 

Английский математик Джон Хортон Конвей изобрел множество математических развлечений, доставляющих не только удовольствие, но и пищу для серьезных размышлений. Одно из его изобретений – язык программирования FRACTRAN, о котором пойдет речь в данной задаче.

Память данных виртуальной машины языка FRACTRAN содержит одно единственное целое число, а программа представляет собой упорядоченную последовательность рациональных дробей. На каждом шаге выполнения программы машина просматривает эти дроби одну за другой слева направо и умножает каждую из них на число из памяти, пока произведение не окажется целым. Полученное целое число записывают в память вместо предыдущего. 

Вот, например, FRACTRAN-программа, предложенная Конвеем для получения последовательности простых чисел:

17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1.

Записав в память исходное значение 2, получим в памяти ряд чисел в следующей последовательности:

15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132, 116, 308, 364, 68, 4, 30, ..., 136, 8, 60, ..., 544, 32, 240, ...

Оказывается, степени двойки в полученной последовательности встречаются только с простыми показателями: 22, 23, 25, ..., и можно проверить, что данная последовательность будет содержать в порядке возрастания все степени двух с простыми показателями.

Заметим, что для получения 22 из исходного числа 2 потребовалось 19 шагов программы, и при этом три раза происходило умножение на дробь 13/11.

А сколько раз придется выполнить умножение на 13/11 при переходе от исходного числа 2 к 2111119?

 

 

Задачу решили: 6
всего попыток: 14
Задача опубликована: 04.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени:

(√2+√3)2 = 9.898979485566356...

(√2+√3)4 = 97.98979485566356...

(√2+√3)6 = 969.998969071069263...

(√2+√3)8 = 9601.99989585502907...

(√2+√3)10 = 95049.999989479221...

(√2+√3)12 = 940897.9999989371855...

(√2+√3)14 = 9313929.99999989263...

(√2+√3)16 = 92198401.99999998915...

Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1.

В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n.

Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013.

Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 11.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:

  • x1 = 2
  • для всех 1 <  i ≤  n : xi-1 <  xi
  • для всех i и j из интервала 1 ≤ i, j ≤  n выполняется неравенство (xi)j <  (xj + 1)i

Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.

Пусть t(n) — количество таких последовательностей длины n.

Тогда t(10) = 86195 и t(20) = 5227991891.

Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.