img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Две цифры из ста" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 4
Задача опубликована: 23.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их количество обозначим как C(n).
Например, при n=91 мы найдем 8 подходящих значений x, а именно: 9, 16, 22, 29, 53, 74, 79, 81. Поэтому C(91)=8.

Найдите сумму таких n≤1011, для которых C(n)>100.

Задачу решили: 4
всего попыток: 9
Задача опубликована: 30.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим уравнение вида a2 + b2 = N,  где N- некоторое нечетное натуральное число, и будем искать его натуральные решения (a, b), где a четно, и b нечетно.
При N=65 наше уравнение имеет два таких решения:
a=8, b=1 и a=4, b=7.
Обозначим через S(N) сумму значений a для всех решений уравнения a2 + b2 = N. Тогда S(65) = 8 + 4 = 12.

Найдите ∑S(N) для всех бесквадратных натуральных N,  имеющих простые делители только вида 4k+1, где k – натуральное число и 4k+1 < 150.

Примечание: бесквадратным (свободным от квадратов) называется натуральное число, которое не делится ни на один квадрат, кроме 1.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Попробуем построить признак делимости для делителя p > 1, взаимно простого с 10. Мы хотим найти для каждого натурального n другое число n1, которое делится на p тогда и только тогда, когда n делится на p. Два целых числа называются равноделимыми на p, если либо они оба делятся на p, либо оба не делятся. Если b – последняя цифра числа n, и n=10a+b, мы будем искать n1 в виде:
n1 = a + b ? m.
Остается найти подходящее значение  m < p, которое будем  называть фактором делимости. Тогда для достаточно больших n мы сможем построить убывающую последовательность равноделимых чисел.
Например, для p=113 фактор делимости равен 34.
При n=76275 получим n1 = 7627 + 5 * 34 = 7797, и оба числа 76275 и 7797 делятся на 113.
При n=12345 получим n1 = 1234 + 5 * 34 = 1404, и оба числа 12345 и 1404 не делятся на 113.
Сумма факторов делимости для всех простых p вида 4k+3, не превышающих 1000, равна 19961.
Найдите сумму факторов делимости для всех простых p вида 4k+3, не превышающих 2*107.

Задачу решили: 9
всего попыток: 12
Задача опубликована: 28.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Определим модифицированную последовательность Коллатца как последовательность натуральных чисел, начинающуюся с числа a1, а далее задаваемую рекуррентно по следующим правилам:

  • an+1 = an/3, когда an делится на 3. Обозначим такой переход от  an к an+1 символом "D".
  • an+1 = (4an + 2)/3, если an дает остаток 1 при делении на 3. Обозначим этот случай символом "U".
  • an+1 = (2an - 1)/3 , если an дает остаток 2 при делении на 3.

Обозначим этот случай символом "d".
Последовательность заканчивается первой встретившейся единицей.
Например, при a1 =231 получим последовательность чисел {231,77,51,17,11,7,10,14,9,3,1} и соответствующую строку символов - "DdDddUUdDD".
Для a1 =1004064 получим строку символов DdDddUUdDDDdUDUUUdDdUUDDDUdDD, которая начинается с DdDddUUdDD.

Найдите все a1<1015, у которых цепочка символов, соответствующая модифицированной последовательности Коллатца, начинается с dDUddDDUUUUUdDDUdUdDUdDUddUDUd.
В качестве ответа укажите их сумму.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 27.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько существует 18-значных натуральных чисел n, таких, что сумма цифр n равна сумме цифр числа 137n?

Задачу решили: 4
всего попыток: 7
Задача опубликована: 26.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6.

Обозначим через S(n) количество натуральных чисел k < 10n, таких что 

  • k делится на 69;
  • d(k) = 69. 

Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036.

Найдите остаток от деления S(2012) на 109.

Задачу решили: 4
всего попыток: 5
Задача опубликована: 19.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2.

Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа.

Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы.

Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы.  Здесь φ(S) означает функцию Эйлера. 

Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51.

Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396.

Найдите количество 18-значных сильно ахиллесовых чисел.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 10.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи:

S =1234567891011121314151617181920212223242...

Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее.

Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365.

Найдите ∑f(11k), где 1≤k≤6.

Задачу решили: 2
всего попыток: 9
Задача опубликована: 24.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными.

Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32).

Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения:

11 = 2 + 9 = (21×30 + 20×32

11 = 8 + 3 = (23×30 + 20×31)

Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2.

Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641.

Найдите сумму простых q < 1000000, для которых P(q)=2.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Голомба {G(n)}  определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n)  вхождений каждого натурального числа n.
Вот несколько первых значений G(n):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 ...

Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30.

Найдите ΣG(2n)для 1 ≤ n < 60.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.