img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "«Собака» и «параллелепипед»" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 81
Задача опубликована: 05.07.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Была исходная последовательность символов:
AAABBABB

В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка:
AAABBABBBBABBAAA

Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?

Задачу решили: 6
всего попыток: 22
Задача опубликована: 19.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.


Используя эту процедуру и не более n одинаковых конденсаторов, мы можем собрать некоторое количество цепей различной суммарной емкости. Например, используя не более 3 конденсаторов с электрической емкостью 60μF каждый, мы можем получить 7 различных значений общей емкости цепи:


(Известно, что, соединяя конденсаторы C1, C2 … параллельно, мы получим общую емкость CT=C1+C2+..., а соединяя последовательно – общую емкость )
Если мы обозначим через D(n) количество различных значений емкости электрических цепей, которые можно собрать, используя не более n одинаковых конденсаторов, то получим D(1)=1, D(2)=3, D(3)=7,...
Найдите D(19).

Задачу решили: 5
всего попыток: 5
Задача опубликована: 02.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Когда звенит колокольчик, блохи одновременно прыгают.
Блоха, сидящая в углу доски, приземляется на одну из двух соседних клеток с равной вероятностью 1/3 и с такою же вероятностью 1/3 возвращается на прежнее место.
Блоха, сидящая у края доски, приземляется на одну из трех соседних клеток с равной вероятностью 1/4 и с такою же вероятностью 1/4 возвращается на прежнее место.
Блоха, сидящая во внутренней части доски, приземляется на одну из четырех соседних клеток с равной вероятностью 1/5 и с такою же вероятностью 1/5 возвращается на прежнее место.
Найдите математическое ожидание количества незанятых блохами клеток после пятидесяти звонков. Результат умножьте на миллион и округлите до ближайшего целого. 

Задачу решили: 2
всего попыток: 2
Задача опубликована: 12.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Мальчику подарили развивающую игру-пазл "числовая змейка", состоящую из 40 фигурных элементов, которые можно собирать цепочкой один за другим и только в определенной последовательности. Элементы перенумерованы в соответствии с этой последовательностью числами от 1 до 40.

Каждый вечер папе приходится собирать элементы, разбросанные по полу в детской. Он подбирает их по одному случайным образом и сразу ставит на нужное место. При этом они образуют несколько готовых отрезков из нескольких идущих подряд элементов, должным образом соединенных между собой. Понятно, что сначала, до того как папа начинает выкладывать змейку, таких отрезков нет, когда он кладет первый элемент, получается один отрезок, состоящий из единственного элемента, а в конце работы остается  также один отрезок, состоящий из всех 40 элементов. По ходу дела количество готовых отрезков может увеличиваться и уменьшаться, достигая в какой-то момент максимума. Вот пример его работы:

Номер элементаКоличество упорядоченных отрезков
12 1
4 2
29 3
6 4
34 5
5 4
35 4

Обозначим через M максимальное количество готовых отрезков, которое достигалось в процессе сборки. В таблице ниже приведено количество вариантов сборки, при которых наблюдаются максимальные числа отрезков M для змейки, состоящей из 10 элементов.

MКоличество способов сборки
1 512
2 250912
3 1815264
4 1418112
5 144000

Как видно, наиболее вероятное значение M равно 3, и оно реализуется 1815264 различными способами, а 181526 — это первые шесть значащих цифр данного числа.
Найдите наиболее вероятное значение M для змейки из 40 элементов и количество способов сборки, при которых достигается это число. В качестве ответа укажите первые шесть значащих цифр результата.

Задачу решили: 4
всего попыток: 9
Задача опубликована: 19.03.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Представьте, что у вас появилась возможность вложить свой трудовой рубль и стать рублевым миллиардером.
Правила такие:
У вас есть один трудовой рубль. Каждый день вы инвестируете некоторую долю своего капитала  f , которую вы должны зафиксировать  раз и навсегда. Известно, что на следующий день ваши инвестиции удваиваются с вероятностью 1/2, но с такою же вероятностью вы их теряете.
Например, если вы выбрали f=1/4, то в первый день вы инвестируете 0,25 руб. Допустим, вам сопутствовала удача. Тогда к вечеру у вас будет 1,5 руб., и назавтра вы инвестируете 0,375 руб. Если фортуна на этот раз от вас отвернется, через два дня у вас останется 1,125 руб., а если повезет — 1,875 руб. Таким образом, при f=1/4 через два дня ваш капитал превысит 1,5 руб. с вероятностью 25%.
Вы решили стать миллиардером с вероятностью не менее 99% за минимальное количество дней. Сколько именно дней вам нужно запланировать на это, если вы выберете оптимальное значение f?

Задачу решили: 4
всего попыток: 10
Задача опубликована: 23.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
По окончании игры Альберт получает 1000 руб. за каждое очко.
Можно подсчитать, что после 10 туров с k=1, k=2,: k=10 математическое ожидание выигрыша составит примерно 12059 руб. 48 коп.
Каково будет математическое ожидание выигрыша после 105 туров с k=1, k=2, k=3, ..., k=105? Дайте ответ в копейках, округлив его до ближайшего целого.

Задачу решили: 4
всего попыток: 6
Задача опубликована: 27.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью.

Перед тем, как прыгнуть, лягушка квакает. 

Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N".

Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P".

Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. 

Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.

 
Задачу решили: 6
всего попыток: 10
Задача опубликована: 11.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

По бесконечной клетчатой доске, клетки которой окрашены в черный или в белый цвет, ползает муравей. Он может двигаться в одном из четырех направлений: вверх, вниз, влево и вправо, с каждым шагом перемещаясь в соседнюю по стороне клетку. При этом муравей соблюдает следующие правила движения:

  • Если он находится на черной клетке, он перекрашивает клетку в белый цвет, изменяет направление своего движения на 90 градусов против часовой стрелки и переходит в соседнюю клетку.
  • Если он находится на белой клетке, он перекрашивает клетку в черный цвет, изменяет направление своего движения на 90 градусов по часовой стрелке и переходит в соседнюю клетку.

Пусть в начальный момент все клетки доски белые, а муравей находится в точке с координатами x=0 и y=0. Клетки доски ориентированы вдоль координатных осей и имеют единичный размер.
Найдите |x|+|y| после 1018 шагов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.