img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Параллелограмм и две биссектрисы - 3" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 94
всего попыток: 277
Задача опубликована: 31.05.09 07:46
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Сколько нулей в записи числа 2009!?

Задачу решили: 34
всего попыток: 53
Задача опубликована: 31.05.09 07:47
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами:

10 + 22
11 + 21
12 + 20
13 + 19
14 + 18
15 + 17
16 + 16
10 + 10 + 12
10 + 11 + 11

А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?

Задачу решили: 61
всего попыток: 109
Задача опубликована: 31.05.09 09:33
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти количество всех делителей числа 22009, в десятичной записи которых отсутствует цифра ноль.

Задачу решили: 126
всего попыток: 135
Задача опубликована: 31.05.09 19:12
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Некоторые числа обладают интересным свойством:

1233 = 122 + 332990100 = 9902 + 1002.

Найти наибольшее 8-значное число ABCDEFGH такое, что ABCDEFGH=ABCD2+EFGH2.

Задачу решили: 22
всего попыток: 151
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 2
сложность: 4 img
баллы: 200
Темы: алгоритмыimg
Лучшее решение: Kruger

На шахматную доску расставляются различные фигуры - кони, слоны, ладьи, ферзи и короли, при этом каждая фигура присутствует хотя бы один раз и ни одна фигура не находится под боем остальных. Какое максимальное количество фигур можно разместить таким образом?

Задачу решили: 16
всего попыток: 104
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+da+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?

Задачу решили: 35
всего попыток: 65
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 40
всего попыток: 73
Задача опубликована: 03.06.09 11:19
Прислал: admin img
Источник: в ред. А.Лунева
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям:

a1 делится на 1;

a1a2 делится на 2;

a1a2a3 делится на 3;

...

a1a2a3...a24 делится на 24.

Задачу решили: 95
всего попыток: 158
Задача опубликована: 04.06.09 14:50
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DmitryM1807 (Дмитрий Майоров)

Какое минимальное количество ходов конем необходимо сделать для того, чтобы пройти через все поля шахматной доски? (Начинать можно с любого поля). 

Задачу решили: 20
всего попыток: 90
Задача опубликована: 05.06.09 07:51
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Необходимо разложить 8290 кафельных плиток размера 1x1 на пол размером 68x122, так чтобы в каждой строке и в каждом столбце было четное количество плиток, при этом на одно место можно положить не более одной плитки. Сколько существует способов такой укладки?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.