img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow добавил комментарий к решению задачи "Снежинки" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 7
Задача опубликована: 06.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число k опорным, если существует такая пара натуральных чисел m≥0 и n≥k, для которых
(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2,
то есть сумма m+1 последовательных квадратов вплоть до k2 включительно равна сумме m последовательных квадратов, начинающихся с (n+1)2, например:
4: 32 + 42 = 52
21: 202 + 212 = 292
24: 212 + 222 + 232 + 242 = 252 + 262 + 272
110: 1082 + 1092 + 1102 = 1332 + 1342
Найдите сумму всех различных опорных чисел в промежутке 109≤k≤1010.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 7
всего попыток: 9
Задача опубликована: 16.07.12 08:00
Прислал: admin img
Источник:
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми.

Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721.

(В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.)

Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.

 

Задачу решили: 5
всего попыток: 6
Задача опубликована: 13.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Рассмотрим многочлен N(p,q) = ΣTn*pn, где  p, q - натуральные числа, сумма берется для 0≤n≤q,  а коэффициенты Tn получены с помощью генератора случайных чисел:
S0 = 290797
Sn+1 = Sn2 mod 50515093
Tn = Sn mod p
Пусть Nfac(p,q) - факториал числа N(p,q), а N0(p,q) - количество нулей, на которое заканчивается число Nfac(p,q).
Например N0(5,10) = 735554.
Найдите остаток от деления N0(5,107) на 525.

Задачу решили: 10
всего попыток: 11
Задача опубликована: 03.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде

p = (x4-y4)/(x3+ y3), где x и y — натуральные числа.

Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.

 

 

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:

  • Он имеет не менее  трех вершин
  • Никакие три его вершины не лежат на одной прямой
  • Все вершины имеют целые координаты
  • Все стороны многоугольника имеют целочисленную длину

Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса.

Тогда Q(4)=1, Q(30) =1242, Q(60) =248282.

Найдите Q(120).

Задачу решили: 10
всего попыток: 12
Задача опубликована: 17.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть четное натуральное число N приемлемым, если все его различные простые делители являются последовательными простыми числами. В частности, все положительные степени 2 являются приемлемыми. Число N=630 приемлемо, поскольку оно четно, а его различные простые множители – 2,3,5,7 – это последовательные простые числа. Число N=660 неприемлемо, поскольку в последовательности его простых множителей – 2,3,5,11 – пропущено простое число 7. 

Если N – приемлемое число, то наименьшее число M>1, для которого N+M – простое число, будем называть псевдо-форчуновым числом приемлемого числа N.

Найдите наименьшее приемлемое N, для которого псевдо-форчуново число равно 97.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 15.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89.

Такую сумму называют представлением Цекендорфа.

Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3.

z(n) для всех шестизначных n равна 7236250.

Найдите ∑z(n) для всех 17-значных n.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 26.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек.

Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203.

Можно подсчитать, что 

f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443

Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000

Задачу решили: 6
всего попыток: 14
Задача опубликована: 04.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени:

(√2+√3)2 = 9.898979485566356...

(√2+√3)4 = 97.98979485566356...

(√2+√3)6 = 969.998969071069263...

(√2+√3)8 = 9601.99989585502907...

(√2+√3)10 = 95049.999989479221...

(√2+√3)12 = 940897.9999989371855...

(√2+√3)14 = 9313929.99999989263...

(√2+√3)16 = 92198401.99999998915...

Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1.

В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n.

Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013.

Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.