img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 26
всего попыток: 64
Задача опубликована: 06.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?

Задачу решили: 11
всего попыток: 14
Задача опубликована: 21.02.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Автоморфные числа - это числа, десятичная запись квадрата которых оканчивается цифрами самого этого числа. Например, число 5 (52=25) или 6 (62=36). Эти числа составляют последовательность: 1, 5, 6, 25, 76, 376, 625, 9 376, 90 625, 109 376, 890 625,... (0 не считается).

В системе счисления с основанием 14 также имеются автоморфные числа. Рассмотрим ряд из этих чисел. Найдите число, находящееся на 28-м месте в этом ряду.

Ответ запишите в десятичной системе счисления.

Задачу решили: 23
всего попыток: 35
Задача опубликована: 28.02.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Известная задача от компании Google звучит так: найдите первое 10-значное простое число, состоящее из последовательных цифр в записи числа e. Немного усложним условие - найдите первое 11-значное число.

Задачу решили: 22
всего попыток: 36
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Kruger

Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.

Задачу решили: 16
всего попыток: 18
Задача опубликована: 04.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n.
Взяв некоторое число n,  будем строить цепочку n, φ(n), φ(φ(n)), φ(φ(φ(n)))…, пока не получим 1. Например, начав с 5, получим последовательность 5,4,2,1, содержащую 4 члена. Ниже приведены все последовательности, содержащие 4 члена.

5,4,2,1
7,6,2,1
8,4,2,1
9,6,2,1
10,4,2,1
12,4,2,1
14,6,2,1
18,6,2,1

Ровно две из них начинаются с простых чисел.
Найдите сумму всех простых чисел, не превышающих 40000000, с которых начинается последовательность длиной 25 и более членов.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 22.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим число
G(n) = (n2)!/(n!)n,
где n – натуральное. Несложно показать, что G(n) – тоже натуральное число.
Например, G(3)=1680. Разложим 1680 на простые множители, а затем их сложим:

1680=24×3×5×7=2×2×2×2×3×5×7,
и
2 + 2 + 2 + 2 + 3 + 5 +7 = 23.
Таким образом, сумма простых множителей числа G(3) равна 23.

Найдите сумму простых множителей числа G(4444).

Задачу решили: 2
всего попыток: 5
Задача опубликована: 20.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Для совершенных чисел n, как вы, вероятно, знаете, σ(n) = 2n. Поэтому назовем коэффициентом совершенства отношение p(n)=σ(n) / n. У совершенных чисел коэффициент совершенства равен 2.
Найдите сумму таких натуральных n < 1018, у которых коэффициент совершенства является несократимой дробью со знаменателем 3.

Задачу решили: 3
всего попыток: 7
Задача опубликована: 06.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число k опорным, если существует такая пара натуральных чисел m≥0 и n≥k, для которых
(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2,
то есть сумма m+1 последовательных квадратов вплоть до k2 включительно равна сумме m последовательных квадратов, начинающихся с (n+1)2, например:
4: 32 + 42 = 52
21: 202 + 212 = 292
24: 212 + 222 + 232 + 242 = 252 + 262 + 272
110: 1082 + 1092 + 1102 = 1332 + 1342
Найдите сумму всех различных опорных чисел в промежутке 109≤k≤1010.

Задачу решили: 7
всего попыток: 9
Задача опубликована: 16.07.12 08:00
Прислал: admin img
Источник:
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми.

Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721.

(В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.)

Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.

 

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:

  • Он имеет не менее  трех вершин
  • Никакие три его вершины не лежат на одной прямой
  • Все вершины имеют целые координаты
  • Все стороны многоугольника имеют целочисленную длину

Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса.

Тогда Q(4)=1, Q(30) =1242, Q(60) =248282.

Найдите Q(120).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.