img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 10
всего попыток: 14
Задача опубликована: 04.07.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201 ... определена следующим образом:
1. T1 = T2 = T3 = 1
2. Tn = Tn-1 + Tn-2 + Tn-3.
Можно показать, что число 27 не является делителем ни одного из членов этой последовательности, и это первое нечетное число, обладающее данным свойством.
Вот все нечетные числа, не превышающие 100 и не являющиеся делителями членов данной последовательности:
27, 81, 91
Их сумма равна 199.
Найдите сумму всех нечетных чисел, не превышающих 2011 и не являющихся делителями членов данной последовательности.

Задачу решили: 5
всего попыток: 8
Задача опубликована: 01.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим число 3600. Оно имеет интересную особенность:
3600 = 482 + 362
3600 = 202 + 2×402
3600 = 302 + 3×302
3600 = 402 + 5×202
Аналогично, 98569 = 2882 + 1252 = 12 + 2×2222 = 372 + 3×1802 = 1072+5×1322.
В 1747 году Эйлер выяснил, какие числа можно представить в виде суммы двух квадратов. А мы хотим выявить числа, которые допускают представление четырьмя следующими способами:
n = a12 + b12,
n = a22 + 2 b22,
n = a32 + 3 b32,
n = a52 + 5 b52,
где  все ai и bi – целые положительные числа.
Существует 144513 подобных чисел, не превышающих 2×107.
А сколько таких чисел не превышает 2×109?

Задачу решили: 5
всего попыток: 5
Задача опубликована: 08.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для произвольных строк A и B определим FA,B как последовательность строк (A,B,AB,BAB,ABBAB,...), в которой каждая строка, начиная с третьей, является конкатенацией (соединением) двух предыдущих.
Затем определим DA,B(n) как n–ый знак первого члена последовательности FA,B, который содержит хотя бы n знаков.
Например, пусть A=1415926535, B=8979323846, и мы хотим найти, скажем, DA,B(35).
Вот несколько первых членов последовательности FA,B:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
Тогда DA,B(35) -это тридцать пятый знак пятого члена последовательности, то есть 9.
Теперь возьмем в качестве A первые сто знаков после запятой числа π:
1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,
а в качестве B возьмем следующие сто знаков:
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196.
Найдите ΣDA,B(n2) для 1<=n<=1000000.

Задачу решили: 15
всего попыток: 30
Задача опубликована: 15.08.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Совершенные числа равны сумме своих делителей (исключая само число). Полусовершенными числами назовем натуральные числа, которые на единицу больше или меньше суммы своих делителей. Например, 2 или 4. Найдите сумму всех полусовершенных чисел, меньших 109.

Задачу решили: 6
всего попыток: 10
Задача опубликована: 21.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Напомним, что функция Эйлера φ(n) определена для натуральных аргументов n и равна количеству натуральных чисел, не больших n и взаимно простых с ним.
6227180929 является наименьшим числом, для которых φ(n)=13!
Найдите сумму всех n, для которых φ(n)=13!

Задачу решили: 4
всего попыток: 8
Задача опубликована: 24.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дано множество простых чисел, не превышающих 5000:
S = {2, 3, 5, ..., 4999}
Найдите, сколько оно содержит подмножеств, у которых количество элементов нечетно, а сумма элементов является простым числом.
В качестве ответа укажите последние 16 знаков результата.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество непустых подмножеств множества

{1250250, 2250249, 3250248,... , 2502492, 2502501},

у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 19.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Определим f(n) как сумму факториалов цифр числа n. Например, f(342) = 3! + 4! + 2! = 32.
Определим sf(n) как сумму цифр числа f(n). Например, sf(342) = 3 + 2 = 5.
Определим g(i) как наименьшее натуральное n, для которого sf(n) = i. Так, sf(342) = 5 и sf(25) = 5, и при этом можно проверить, что  наименьшим n, для которого sf(n) = 5 является число 25, поэтому g(5) = 25.
Определим sg(i) как сумму цифр числа g(i). Например, sg(5) = 2 + 5 = 7.
Для некоторых i значения sg(i) совпадают. Например, sg(5)=sg(10)=7;
Можно проверить, что сумма различных значений sg(i) при 1 ≤i ≤20 равна 108.
Найдите сумму различных значений sg(i) при 1 ≤i≤150.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность g(k) задана следующим образом:
g(k) = 1, при 0 ≤k ≤1999
g(k)= g(k-2000) + g(k-1999), при k ≥2000.
Найдите остаток от деления суммы g(100)+ g(101)+ g(102)+…+ g(1018) на 12344321.

Задачу решили: 6
всего попыток: 9
Задача опубликована: 23.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число достижимым, если оно является значением выражения, построенного по следующим правилам:
1. В выражении должны быть использованы все цифры от 1 до 9 в порядке возрастания, каждая ровно по одному разу.
2. Несколько последовательных цифр могут быть объединены в десятичное число, например, цифры 2,3 и 4 могут быть объединены в число 234.
3. Можно использовать четыре арифметических действия, каждое из них может быть использовано любое количество раз или не использовано вовсе.
4. Пользоваться унарным минусом нельзя
5. Можно  использовать любое количество вложенных пар скобок для задания порядка действий.
Например, число 42 достижимо, поскольку  (1/23) * ((4*5)-6) * (78-9) = 42.

Сколько всего существует достижимых чисел?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.