Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
84
Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Задачу решили:
23
всего попыток:
79
Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам: 1. во всех отделениях всех корзин разное (ненулевое) количество мячей; 2. во всех корзинах в сумме по отделениям одинаковое количество мячей; 3. количество мячей в корзинах минимально возможное для данного количества корзин. Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное. У вас 100 корзин, найти сумму мячей в одной корзине.
Задачу решили:
19
всего попыток:
28
Будем изготавливать из проволоки прямоугольные треугольники с целочисленными сторонами. Для этого нам потребуется кусок проволоки длиной не менее 12 см, а из двенадцатисантиметрового куска мы сможем согнуть такой треугольник ровно одним способом. Существует бесконечно много чисел, которые могли бы быть периметром прямоугольного треугольника, например: С другой стороны, если взять проволоку длиной 20, прямоугольный треугольник с целочисленными сторонами из нее не согнешь, а из проволоки длиной 120 см можно сделать три разных треугольника: 120 см: (30,40,50), (20,48,52), (24,45,51)
Задачу решили:
94
всего попыток:
277
Сколько нулей в записи числа 2009!?
Задачу решили:
34
всего попыток:
53
Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами: 10 + 22 А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?
Задачу решили:
61
всего попыток:
109
Найти количество всех делителей числа 22009, в десятичной записи которых отсутствует цифра ноль.
Задачу решили:
126
всего попыток:
135
Некоторые числа обладают интересным свойством: 1233 = 122 + 332, 990100 = 9902 + 1002. Найти наибольшее 8-значное число ABCDEFGH такое, что ABCDEFGH=ABCD2+EFGH2.
Задачу решили:
22
всего попыток:
151
На шахматную доску расставляются различные фигуры - кони, слоны, ладьи, ферзи и короли, при этом каждая фигура присутствует хотя бы один раз и ни одна фигура не находится под боем остальных. Какое максимальное количество фигур можно разместить таким образом?
Задачу решили:
16
всего попыток:
104
Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+d, a+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?
Задачу решили:
35
всего попыток:
65
Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|