img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik добавил комментарий к решению задачи "Треугольник с двумя окружностями - 2" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 6
Задача опубликована: 05.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим


Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.

С другой стороны, 1+i не является делителем 5, поскольку .

Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.

n Гауссовы делители с положительной
вещественной частью
Сумма этих делителей
s(n)
1 1 1
2 1, 1+i, 1-i, 2 5
3 1, 3 4
4 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 13
5 1, 1+2i, 1-2i, 2+i, 2-i, 5 12

Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 12.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое.

Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров.

Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар.

Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех).

То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n.

Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.

Задачу решили: 5
всего попыток: 16
Задача опубликована: 26.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Посмотрим на десятичную запись первых неотрицательных целых чисел:

0 1 2 3 4 5 6 7 8 9 10 11 12....

Выберем одну из цифр, например единицу (d=1), а затем начнем выписывать наши числа, подсчитывая количество использованных единиц. Обозначим полученное количество через  f(n,1) и запишем его против каждого числа n. Вот что получится:

n    f(n,1)
0    0
1    1
2    1
3    1
4    1
5    1
6    1
7    1
8    1
9    1
10    2
11    4
12    5


Заметьте, что f(n,1) не равно 3 ни при каких n.
Уравнение f(n,1)=n имеет решения n=0 и n=1, а следующее решение - только n=199981.

Аналогично, подсчитаем, сколько раз мы использовали цифру d, и обозначим полученное количество через f(n,d).
Заметим, что для каждой цифры d, кроме нуля, n=0 является первым решением уравнения f(n,d)=n.
Обозначим через s(d) сумму всех решений уравнения f(n,d)=n. Например, s(1)=22786974071.

Найдите ∑ s(d) при 0 ≤ d ≤ 9.

Замечание: Если для какого-то n f(n,d)=n для нескольких значений d, n необходимо учитывать каждый раз для каждой цифры d.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 02.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:

1/1+1/1=20/10 1/1+1/2=15/10 1/1+1/5=12/10 1/1+1/10=11/10 1/2+1/2=10/10
1/2+1/5=7/10 1/2+1/10=6/10 1/3+1/6=5/10 1/3+1/15=4/10 1/4+1/4=5/10
1/4+1/20=3/10 1/5+1/5=4/10 1/5+1/10=3/10 1/6+1/30=2/10 1/10+1/10=2/10
1/11+1/110=1/10 1/12+1/60=1/10 1/14+1/35=1/10 1/15+1/30=1/10 1/20+1/20=1/10

А сколько решений будет иметь это уравнение при n=16?

Задачу решили: 8
всего попыток: 9
Задача опубликована: 09.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Выберем три различные буквы из русского алфавита (содержащего, как известно, 33 буквы). Из них сформируем строку длиной 3 знака, например, 'абв', 'пар' или 'юэь'.
В строке 'абв' ровно две буквы стоят сразу после букв, предшествующих им в алфавите.
В слове 'пар' только у одной буквы 'р' ближайший сосед слева предшествует ей в русском алфавите. В слове 'юэь' нет букв, которые стоят в алфавите после их соседа слева.
Всего из 33 букв русского алфавита можно составить 21824 трехбуквенных "слов" так, чтобы ровно у одного знака соседняя слева буква предшествовала бы ему в алфавите, и буквы в слове не повторялись.
А теперь рассмотрим строки длиной n, и обозначим через p(n) число таких "слов" длиной n, что ровно у одного знака в слове соседняя слева буква предшествует ему в алфавите, и буквы в слове не повторяются.
Найдите максимальное значение p(n).

Задачу решили: 10
всего попыток: 14
Задача опубликована: 16.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами:
24 = 2×2×2×3
24 = 2×3×4
24 = 2×2×6
24 = 4×6
24 = 3×8
24 = 2×12
24 = 24
Напомним, что "цифровым корнем" десятичного числа называют величину, получаемую суммированием его цифр. Если в результате получается число большее, чем 9, эту операцию повторяют несколько раз до тех пор, пока не получится число, меньшее, чем 10. Например, цифровой корень числа 467 равен 8.

Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:

Разложение Сумма цифровых корней
2×2×2×3 9
2×3×4 9
2×2×6 10
4×6 10
3×8 11
2×12 5
24 6

Максимальная сумма цифровых корней для всех разложений числа 24 равна 11.
Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n).
Найдите наименьшее n, для которого mdrs(n)>60.

Задачу решили: 11
всего попыток: 17
Задача опубликована: 23.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n).

Например:

9! = 362880 и f(9)=6288

10! = 3628800 и f(10)=6288

20! = 2432902008176640000 и f(20)=7664

Найдите f(1014).

Задачу решили: 6
всего попыток: 7
Задача опубликована: 30.08.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:

 

С учетом различных ориентаций можно насчитать шесть видов тримино:

Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом:

При этом симметричные покрытия мы считали различными.

Сколько существует подобного рода покрытий для прямоугольника 8 х 15?

Задачу решили: 7
всего попыток: 15
Задача опубликована: 06.09.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

В шестнадцатеричной системе счисления числа представляют с помощью 16 цифр:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Шестнадцатеричная запись AF соответствует десятичному числу 10x16+15=175.
В трехзначных шестнадцатеричных числах AA0 и A0A цифра 0 использована 1 раз, а цифра A - 2 раза. Как и в десятичных числах, ноль слева не пишется.
Сколько найдется шестнадцатеричных чисел, в записи которых не более 16 цифр, цифра 0 использована хотя бы один раз, а цифра A использована более 1 раза?

Ответ представьте в шестнадцатеричной системе счисления.

((A,B,C,D,E и F в верхнем регистре, без каких-либо дополнительных символов и нолей слева, например, 1A3F - правильный формат, а 1a3f, 0x1a3f, $1A3F, #1A3F и 0000001A3F - неправильно))
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.