img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Три пентамино - 3" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 8
Задача опубликована: 01.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим число 3600. Оно имеет интересную особенность:
3600 = 482 + 362
3600 = 202 + 2×402
3600 = 302 + 3×302
3600 = 402 + 5×202
Аналогично, 98569 = 2882 + 1252 = 12 + 2×2222 = 372 + 3×1802 = 1072+5×1322.
В 1747 году Эйлер выяснил, какие числа можно представить в виде суммы двух квадратов. А мы хотим выявить числа, которые допускают представление четырьмя следующими способами:
n = a12 + b12,
n = a22 + 2 b22,
n = a32 + 3 b32,
n = a52 + 5 b52,
где  все ai и bi – целые положительные числа.
Существует 144513 подобных чисел, не превышающих 2×107.
А сколько таких чисел не превышает 2×109?

Задачу решили: 5
всего попыток: 5
Задача опубликована: 08.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для произвольных строк A и B определим FA,B как последовательность строк (A,B,AB,BAB,ABBAB,...), в которой каждая строка, начиная с третьей, является конкатенацией (соединением) двух предыдущих.
Затем определим DA,B(n) как n–ый знак первого члена последовательности FA,B, который содержит хотя бы n знаков.
Например, пусть A=1415926535, B=8979323846, и мы хотим найти, скажем, DA,B(35).
Вот несколько первых членов последовательности FA,B:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
Тогда DA,B(35) -это тридцать пятый знак пятого члена последовательности, то есть 9.
Теперь возьмем в качестве A первые сто знаков после запятой числа π:
1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,
а в качестве B возьмем следующие сто знаков:
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196.
Найдите ΣDA,B(n2) для 1<=n<=1000000.

Задачу решили: 15
всего попыток: 30
Задача опубликована: 15.08.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Совершенные числа равны сумме своих делителей (исключая само число). Полусовершенными числами назовем натуральные числа, которые на единицу больше или меньше суммы своих делителей. Например, 2 или 4. Найдите сумму всех полусовершенных чисел, меньших 109.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 22.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим число
G(n) = (n2)!/(n!)n,
где n – натуральное. Несложно показать, что G(n) – тоже натуральное число.
Например, G(3)=1680. Разложим 1680 на простые множители, а затем их сложим:

1680=24×3×5×7=2×2×2×2×3×5×7,
и
2 + 2 + 2 + 2 + 3 + 5 +7 = 23.
Таким образом, сумма простых множителей числа G(3) равна 23.

Найдите сумму простых множителей числа G(4444).

Задачу решили: 3
всего попыток: 6
Задача опубликована: 29.08.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100

Братья-математики Коля и Даня решили поиграть по следующим правилам.
Коля бросает монетку и, если выпадает орел, получает на свой счет очко, а если решка – не получает ничего.
Даня выбирает натуральное число T и бросает монетку T раз. Если при этом хотя бы раз выпадает решка, Даня не получает ничего, но если T раз выпадет орел, он получает сразу 2T-1 очков.
Цель игры – набрать первым ровно 100 очков. Если игрок (очевидно, это может быть только Даня) наберет больше 100 очков, он считается проигравшим.
Какова вероятность выигрыша Дани, если он будет играть наилучшим образом, а первым ходит Коля?
Результат умножьте на 1000000 и округлите вниз до целого.

Задачу решили: 4
всего попыток: 13
Задача опубликована: 05.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим окружность, заданную тремя точками (0,0), (N,0) и (N,N).
Обозначим через f(N) количество точек с целочисленными координатами, лежащих на этой окружности.
Можно показать, что f(10000)=36.

Найдите сумму  таких натуральных N≤1011, для которых f(N) = 588.

Задачу решили: 5
всего попыток: 5
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Аналогично, обозначим через ups(n) верхний простой квадратный корень из n, т.е. наименьшее простое число, большее или раное √n.
Например, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.
Назовем число n≥4 полуделимым, если оно делится на lps(n) или на  ups(n), но не кратно обоим этим числам одновременно. Первые три полуделимых числа – это 8, 10 и 12. Число 15 не является полуделимым, поскольку  оно кратно и lps(15)=3, и ups(15)=5. Сумма первых трех полуделимых чисел равна 30. Сумма первых 92 полуделимых чисел равна 34825.
Найдите сумму первых 3711717 полуделимых чисел.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 19.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

 

Решите уравнение относительно r:

Результат округлите до целого.

 

 

Задачу решили: 3
всего попыток: 12
Задача опубликована: 26.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На складах 'A' и 'B' хранятся деликатесы в следующих количествах:

Наименование товара Склад 'A',
кол-во упаковок
Склад 'B',
кол-во упаковок
Белужья икра 5248 640
Рождественский кекс 1312 1888
Окорок 2624 3776
Марочный портвейн 5760 3776
Шампанские трюфели 3936 5664

Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом.

<page-break/>

Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Однажды хозяин решил проанализировать сохранность продуктов, используя два вида показателей:
• Доля испорченных для каждого из пяти видов продуктов и для каждого склада, которая рассчитывалась как отношение количества испорченного продукта на данном складе к количеству данного продукта на данном складе.
• Общая доля испорченных продуктов для каждого склада, которая рассчитывалось как общее количество испорченных продуктов на складе к общему количеству всех продуктов на данном складе.
Выяснилось, что на складе 'B' доля испорченных продуктов каждого вида больше, чем на складе 'A'. При этом оказалось, что доля испорченных для каждого из пяти продуктов на складе B отличалась от доли испорченных для того же продукта на складе A одним и тем же множителем m>1, т.е. отношение долей испорченных продуктов для каждого из продуктов было одинаково.
Но самым удивительным было то, что общая доля испорченных продуктов на складе 'A' была больше, чем на складе 'B', и их отношение также было в точности равно m.
Оказывается, что эта странная ситуация не уникальна. Она может возникать при 35 различных значениях m>1, и при этом наименьшее общее количество испорченных продуктов на обоих складах вместе равно 215.
Найдите наибольшее количество упаковок, которое могло испортиться на обоих складах вместе в подобной удивительной ситуации.

Задачу решили: 7
всего попыток: 8
Задача опубликована: 03.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Рассмотрим замкнутые ломаные, каждая из которых
• проходит через центры всех клеток шахматной доски 4×n,
• состоит из вертикальных и горизонтальных отрезков,
• не имеет самопересечений.
На рисунке изображена одна такая ломаная на доске 4×10:
 
Обозначим через T(n) количество таких ломаных для доски 4×n.
Можно показать, что T(10) = 1517.
Найдите остаток T (1012) по модулю 108.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.