Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
21
Треугольный планшет - это доска в форме правильного треугольника со штырями, которые вбиты в узлы треугольной решетки. Имеется неограниченное количество резиновых колец, каждое из которых можно натягивать на штыри так, что резинка принимает контур равностороннего треугольника. Требуется надеть на штыри несколько резинок так, чтобы они охватывали все шторы и контуры всех возможных равносторонних треугольников, у которых стороны параллельны сторонам треугольного планшета. Размер планшета определяется числом штырей на одной стороне его треугольного поля. Если размер планшета обозначить буквой n, количество надетых резинок N, то возможна такая последовательность: для n=2, 3, 4, 5, ..., для N=1, 5, 13, 27, ... соответственно. Найти n, для которого N/(n-1)=1000.
Задачу решили:
18
всего попыток:
22
Куб 9х9х9, изображенный на рисунке справа, составлен из единичных кубиков. Эти кубики раскрашены в два цвета так, что некоторые из них образуются трехмерные кресты с общим центром (см. рис.). Торцы крестов – это квадраты 1х1, 3х3, 5х5, …, которые составлены из квадратных рамок, чередующихся по цвету. Сколько синих кубиков в кубе 29х29х29, раскрашенного по такому же принципу?
Задачу решили:
21
всего попыток:
29
На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100? Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
18
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100? На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.
Задачу решили:
19
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?
На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.
Задачу решили:
9
всего попыток:
16
В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок). Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам. За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)? На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета). В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.
Задачу решили:
20
всего попыток:
23
Определить сумму всех целых положительных чисел n < 1000 таких, что из n прямоугольников с размерами 1×n, 2×n, 3×n, ..., n×n можно cложить квадрат. (Прямоугольники нельзя накладывать друг на друга.)
Задачу решили:
8
всего попыток:
10
Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки. Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым. В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении: Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).
Задачу решили:
22
всего попыток:
28
Однажды в колхозе некий работник договорился о зарплате за 12 месяцев работы с 1-го Апреля: 800 рублей плюс Кляча, которая стоила всегда в целых рублях, но не более 50-ти! По причине форс-мажора, работник был вынужден уволиться после 7 месяцев работы, и ему заплатили: 490 рублей + Кляча. Всё честно! Сколько рублей стоила Кляча на момент договорённости?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|