img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 37
всего попыток: 44
Задача опубликована: 03.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Натуральное число в десятичной записи заканчивается на цифру 6. Когда эту цифру перенесли в начало, то исходное число увеличилось в 4 раза. Найти сумму двух наименьших таких чисел.

Задачу решили: 31
всего попыток: 34
Задача опубликована: 06.05.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Классный руководитель отправил своих учеников Антона, Бориса, Вадима, Григория и Дмитрия на олимпиаду по математике и предположил, что Антон займет первое место, Борис - второе, Вадим - третье, Григорий - четвертое и Дмитрий - пятое. Оказалось, что он не угадал ни одного правильного места, и ни одной пары следующей непосредственно друг за другом учеников. Учитель математики предположил, что последовательность будет такой: Григорий, Антон, Дмитрий, Вадим, Борис и угадал места двоих учеников и две пары непосредственно следующих друг за другом учеников. Установите верный порядок. В ответе укажите последовательность цифр 1 (соответствует Антону), 2 (соответствует Борису) и т.д. в порядке от первого места до последнего. Например, если бы учитель математики был прав, то ответом было бы число - 41532.

Задачу решили: 23
всего попыток: 36
Задача опубликована: 11.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино.

Умножение и домино

Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются.

В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.

Задачу решили: 39
всего попыток: 53
Задача опубликована: 20.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В записи 30?0?03 вопросительные знаки заменили на цифры и получили число, которое стало делиться на 13 нацело. Найдите сумму всех чисел, которые могли получиться. 

Задачу решили: 35
всего попыток: 63
Задача опубликована: 22.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

На листках отрывного календаря на год написаны числа, соответствующие датам каждого месяца. Какое наименьшее количество листков нужно оторвать так, чтобы на оставшихся листках не нашлось двух чисел, одно их которых в два раза больше другого?

Уточнение: листки календаря можно вырывать в любом порядке.

Задачу решили: 28
всего попыток: 70
Задача опубликована: 01.06.20 08:00
Прислал: Sam777e img
Источник: Индийская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Пусть S - множество всех рациональных чисел r вида r = 0,(abcdefgh), то есть чистых десятичных периодических дробей, имеющих минимальный период длиной 8. Найти сумму всех элементов S.

Чистой периодической дробью (ЧПД) называется дробь, в которой период начинается с первого знака после запятой, например, 6/11  - ЧПД, а 7/12 - нет.

Задачу решили: 22
всего попыток: 23
Задача опубликована: 10.06.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Докажите, что для любого натурального числа существует такое его кратное, в десятичной записи которого используется не более двух различных цифр.

Задачу решили: 28
всего попыток: 60
Задача опубликована: 15.06.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

В кружках фигуры расставлены числа от 1 до 13.

Числовой бриллиант

Переставьте несколько чисел так, чтобы суммы четырех чисел, расположенных в кружках-вершинах всех квадратов (убедитесь, что их 11), были равными. В ответе укажите наименьшее количество переставленных чисел.

Задачу решили: 46
всего попыток: 57
Задача опубликована: 26.06.20 08:00
Прислал: admin img
Источник: Математический праздник
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите сумму всех трехзначных простых чисел, состоящих из разных цифр, в которых последняя цифра равна сумме двух первых.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.