Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
36
Восемнадцать натуральных чисел от 1 до 18 можно разместить по кругу так, что любые два соседних в сумме давали треугольное число. Записав затем все числа в ряд друг за другом без пробелов, получим 27-значное число. Найдите наименьшее такое число.
Задачу решили:
34
всего попыток:
44
Два оранжевых прямоугольных треугольника имеют одинаковую площадь, пятиугольник - правильный. Найдите (a/b-1)2.
Задачу решили:
37
всего попыток:
37
Число ABCDEF состоит из разных цифр, таких что Найдите наименьшее число ABCDEF.
Задачу решили:
31
всего попыток:
50
*****/*****=9 Замените в выражении звездочки различными цифрами от 0 до 9 так, что было верно равенство. Первая цифра в числе не может быть 0. Найдите все раздичные решения и введите в качестве ответа сумму всех числителей.
Задачу решили:
29
всего попыток:
33
Обозначим: Например: Также обозначим: Например: Найдите сумму S1 + S2.
Задачу решили:
30
всего попыток:
45
Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)
Задачу решили:
20
всего попыток:
48
7 первых натуральных чисел, кратных 7-и, расположили в каком-то произвольном порядке в одну строку без пробелов, например так: 7142128354249. Соединив первую и последнюю цифры, получили замкнутую цепочку из 13-и цифр (смотрите рисунок). Затем разъединили какие-то две соседние цифры и снова натянули цепочку в одну строку. Получилось 13-значное число. На рисунке это число: 2835424971421. Какое наименьшее возможное число? Замечание: Наши цифры как игрушка «Ванька-встань-ка» - сколько бы их ни поворачивать, они всегда смотрят на нас вертикально.
Задачу решили:
30
всего попыток:
39
В числовом ребусе:
Задачу решили:
38
всего попыток:
41
Расшифруйте пример на умножение С * НОВЫМ = ГОДОМ, в котором одинаковым буквам соответствуют одинаковые цифры и разным буквам – разные цифры, причем, в примере используются цифры от 0 до 7. В ответе запишите одиннадцатизначное число СНОВЫМГОДОМ.
Задачу решили:
37
всего попыток:
44
Найдите наименьшее простое число p, представимое как:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|