img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 39
Задача опубликована: 26.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество целых неотрицательных упорядоченных троек чисел x, y и z таких, что:
x+y=z2,
x2+y2=z3.

Задачу решили: 34
всего попыток: 48
Задача опубликована: 14.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

a+b=1, a2+b2=2. Найдите a11+b11.

Задачу решили: 30
всего попыток: 48
Задача опубликована: 19.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений системы уравнения:
x+2y+4z=9,
4yz+2xz+xy=13,
xyz=3.

Задачу решили: 21
всего попыток: 36
Задача опубликована: 21.09.22 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Найти количество различных троек действительных чисел (a, b, c) таких, что:
a2+b2+c2=66,
a3+b3+c3=408,
a4+b4+c4=2658.

Задачу решили: 31
всего попыток: 50
Задача опубликована: 23.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений:
sin(π*x)=|ln|x||

Задачу решили: 22
всего попыток: 26
Задача опубликована: 28.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mda

Пусть f(x) - многочлен такой, что f(f(x))−x2 = xf(x). Найти f(2022).

Задачу решили: 23
всего попыток: 27
Задача опубликована: 30.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Различные числа а, b, c таковы, что уравнения x2+ax+1=0 и x2+bx+c=0 имеют общий действительный корень. Кроме того, уравнения x2+x+a=0 и x2+cx+b=0 тоже имеют общий действительный корень. Найти сумму a+b+c. 

Задачу решили: 27
всего попыток: 32
Задача опубликована: 21.10.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q). 

Задачу решили: 24
всего попыток: 30
Задача опубликована: 24.10.22 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mda

n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13.

Последовательность в таблице Пифагора

Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ...

Пусть a0=1, a1=6, a2=8. Найдите a111.

Задачу решили: 22
всего попыток: 26
Задача опубликована: 14.11.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. 

Последовательность на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда  a0=1, a1=9, a2=51, a3=295, ... Найдите  23-й член последовательности (an).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.