img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 271
всего попыток: 611
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Проволочный каркас куба с ребром длиной 10 см вымазан мёдом. Сидящая в вершине муха хочет проползти по всем сладким рёбрам, чтобы съесть весь мёд. Какое минимальное количество сантиметров её придётся для этого преодолеть?

Задачу решили: 131
всего попыток: 329
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?

Задачу решили: 59
всего попыток: 154
Задача опубликована: 25.06.09 01:23
Прислал: Rep img
Источник: Олимпиада Ростовской области, 1973
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

По окружности расставлены 30 фишек: 20 белых и 10 чёрных. За один ход разрешается поменять местами любые две фишки, между которыми стоят ещё три фишки. Две расстановки фишек называются эквивалентными, если одну из них можно получить из другой несколькими такими ходами. Вопрос: сколько существует НЕэквивалентных расстановок?

Задачу решили: 59
всего попыток: 391
Задача опубликована: 29.06.09 15:52
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В пространстве даны шар и три различные плоскости, возможно его пересекающие. Каково максимально возможное число разных способов, которыми можно разместить в пространстве второй шар так, чтобы он касался первого и трёх данных плоскостей?

Задачу решили: 89
всего попыток: 173
Задача опубликована: 03.07.09 22:37
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: fedyakov

Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.

Задачу решили: 178
всего попыток: 391
Задача опубликована: 08.07.09 00:31
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!

Задачу решили: 143
всего попыток: 210
Задача опубликована: 21.07.09 00:50
Прислал: min img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: rfq (Алексей Кайгородов)

100 пассажиров по очереди заходят в самолет, имеющий 100 мест. Первой заходит старушка и садится на любое место. Каждый следующий пассажир занимает место, указанное в его билете, если это возможно; в противном случае — любое из оставшихся свободных мест.  Какова вероятность, что последнему пассажиру достанется место, указанное в его билете?

Задачу решили: 89
всего попыток: 280
Задача опубликована: 31.07.09 13:58
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sweetale

На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?

Задачу решили: 143
всего попыток: 595
Задача опубликована: 05.08.09 12:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу.

Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.