img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 34
всего попыток: 55
Задача опубликована: 07.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько раз за последние 400 лет по григорианскому календарю 1 января выпадало на воскресенье?

Задачу решили: 25
всего попыток: 35
Задача опубликована: 29.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Имеются две модели октаэдров: каркасная и бумажная.

2 октаэдра

Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 24
всего попыток: 78
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 30
всего попыток: 84
Задача опубликована: 27.05.20 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2012" (Легион)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.

Задачу решили: 43
всего попыток: 69
Задача опубликована: 01.07.20 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Два благородных крокодильчика начинают поедать  с двух концов единичный отрезок  по следующей схеме: первый со своего конца откусывает 1/2 отрезка, второй со своего конца откусывает 1/3  оставшейся части отрезка, затем первый  откусывает 1/4 остатка, второй  откусывает 1/5 остатка, и т.д. 

Два благородных крокодильчика

Какую часть отрезка съест первый крокодильчик?

Ответе укажите в процентах, округлив его до целого.

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 28
всего попыток: 47
Задача опубликована: 31.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 02.10.20 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mikev

Даны три точки: A = (-20, 0, 0), B = (20, 0, 0), C(0, 20√3, 0). Назовем точку D(x, y, z) подходящей, если расстояние от неё до какой-нибудь из этих трёх точек равно сумме расстояний от D до двух других. Чему равен объём наименьшего шара, содержащего все подходящие точки? В качестве ответа введите целую часть значения объёма.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.