Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
42
всего попыток:
47
Вовочка отпилил от каждой ножки табуретки по кусочку. После этого табуретка стала стоять наклонно, но по-прежнему касалась пола всеми ножками. Длины трёх отпиленных кусочков 7, 9 и 13. Найдите все возможные длины четвёртого кусочка и укажите их сумму. (Сиденье табуретки - квадратное, ножки - перпендикулярны сиденью и можно считать бесконечно тонкими, т.е. касаются пола одной точкой.)
Задачу решили:
25
всего попыток:
35
Имеются две модели октаэдров: каркасная и бумажная. Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.
Задачу решили:
30
всего попыток:
84
Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.
Задачу решили:
43
всего попыток:
69
Два благородных крокодильчика начинают поедать с двух концов единичный отрезок по следующей схеме: первый со своего конца откусывает 1/2 отрезка, второй со своего конца откусывает 1/3 оставшейся части отрезка, затем первый откусывает 1/4 остатка, второй откусывает 1/5 остатка, и т.д. Какую часть отрезка съест первый крокодильчик? Ответе укажите в процентах, округлив его до целого.
Задачу решили:
28
всего попыток:
47
В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.
Задачу решили:
17
всего попыток:
24
Даны три точки: A = (-20, 0, 0), B = (20, 0, 0), C(0, 20√3, 0). Назовем точку D(x, y, z) подходящей, если расстояние от неё до какой-нибудь из этих трёх точек равно сумме расстояний от D до двух других. Чему равен объём наименьшего шара, содержащего все подходящие точки? В качестве ответа введите целую часть значения объёма.
Задачу решили:
20
всего попыток:
27
В тетраэдре ABCD: |AB|=a, |CD|=b, расстояние между прямыми AB и CD равно d, величина угла между этими прямыми равна a. Тетраэдр разделен на две части плоскостью P, параллельной противвоположным ребрам AB и CD. Вычислите отношение объёмов обеих частей (меньшего к большему), если известно, что отношение расстояния от AB до P к расстоянию от CD до P равно 3.
Задачу решили:
26
всего попыток:
30
В тетраэдре одно и только одно ребро имеет длину более 1. Найдите максимально возможные объем тетраэдра.
Задачу решили:
23
всего попыток:
33
Найдите максимальный радиус сферы, которую можно поместить в каждый тетраэдр, все высоты которого больше 1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|