img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 131
всего попыток: 329
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?

Задачу решили: 89
всего попыток: 173
Задача опубликована: 03.07.09 22:37
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: fedyakov

Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.

Задачу решили: 139
всего попыток: 540
Задача опубликована: 13.07.09 00:38
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: fedyakov

А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили: 33
всего попыток: 430
Задача опубликована: 13.12.09 19:11
Прислал: bbny img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: ghost

Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.

Замечания: 1) Каждая буквая — это объединение точек, отрезков и дуг окружностей; у букв нет никаких украшений, закорючек и выступов, например, буква Г состоит из двух отрезков, образующих прямой угол, буква Д — это буква П (три отрезка), стоящая на подставке, похожей на П, но более широкой и низкой, буква К — угол, примыкающий к отрезку, буква Ж — симметрия с буквой К, буква О — объединение четырёх дуг окружностей, буква З — правая половина конструкции из двух касающихся равных окружностей, стоящих друг на друге, буква Й — дуга над тремя отрезками, буква С — три дуги от буквы О, буква Р — конструкция из двух отрезков и дуги окружности, примыкающая к вертикальному отрезку вверху и посередине, буква Л — два отрезка, образующие острый угол, и т.д. 2) Бесконечное множество называется несчётным, если оно не допускает взаимно однозначного отображения на множество натуральных чисел. Например, числовая прямая, отрезок ненулевой длины, окружность и плоскость представляют собой несчётные множества точек. Ну, а рациональные числа образуют, наоборот, счётное множество.

Задачу решили: 57
всего попыток: 213
Задача опубликована: 12.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

При скачивании файла пользователю показывается прогноз оставшегося времени, которое рассчитывается исходя из предположения, что средние скорости скачивания всего файла и его уже скачанной части одинаковы. Через 20 секунд после начала закачки файла размером 100 Мбайт ожидаемое до её окончания время составляло 1 минуту и не изменялось после этого в течение 2 минут. Сколько Кбайт/сек составляла мгновенная скорость скачивания в конце этих 2 минут? Ответ округлите до ближайшего целого числа и помните, что 1 Мбайт = 1024 Кбайт.

Задачу решили: 49
всего попыток: 301
Задача опубликована: 04.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Вычислите


и округлите результат до ближайшего целого числа.

Задачу решили: 78
всего попыток: 203
Задача опубликована: 11.08.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?

Задачу решили: 74
всего попыток: 262
Задача опубликована: 17.09.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько положительных действительных решений имеет каждое из следующих уравнений:

Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:

Задачу решили: 122
всего попыток: 178
Задача опубликована: 06.10.10 08:00
Прислал: katalama img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Вычислите

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.