Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
33
всего попыток:
56
В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Задачу решили:
28
всего попыток:
43
В колоде в неизвестном порядке лежат карточки на которых записаны все целые числа от 1 до 100. Вы можете задать вопрос в каком порядке относительно друг друга располагаются любые 50 чисел. За какое наименьшее число вопросов наверняка можно узнать порядок всех карточек с числами?
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задачу решили:
10
всего попыток:
25
Вовочка называет ненулевую цифру, а Маша вставляет ее вместо одной из звёздочек в выражение **** - **** (разность двух четырехзначных чисел). Вовочка может одну цифру назвать только один раз. Цель Вовочки - получить после восьми ходов максимальное значение выражения, а цель Маши - минимальное. Каким будет значение выражения при идеальной игре обоих?
Задачу решили:
44
всего попыток:
47
Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке. Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.
Задачу решили:
20
всего попыток:
100
Концы ломаной из двух звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 1. Это первый целочисленный шестиугольник. Концы ломаной из трёх звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 2. Это второй целочисленный шестиугольник (смотрите рисунок). Сколько звеньев у ломаной, соединяющей середины противоположных сторон шестого по размерам правильного целочисленного шестиугольника? Ломаная строится как змейка: первое звено равно 1, каждое последующее на 1 больше предыдущего; угол межу соседними звеньями равен Pi/3.
Задачу решили:
20
всего попыток:
23
Параллелограмм разбивается на четыре треугольника с целочисленными площадями так, как показано на рисунке. Найти площадь внутреннего треугольника шестого по счёту по величине площади параллелограмма, для которого выполнятся эти условия, считая первым параллелограмм с площадями треугольников 24,25,26,55.
Задачу решили:
11
всего попыток:
18
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).
Задачу решили:
8
всего попыток:
13
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|