img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 87
всего попыток: 127
Задача опубликована: 04.01.11 08:00
Прислала: Marishka24 img
Источник: Австрийская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?

Задачу решили: 36
всего попыток: 193
Задача опубликована: 16.01.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?

Задачу решили: 109
всего попыток: 131
Задача опубликована: 21.01.11 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n

Задачу решили: 70
всего попыток: 200
Задача опубликована: 18.02.11 08:00
Прислал: Busy_Beaver img
Источник: Всероссийский фестиваль юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: logoped (Дмитрий Исканцев)

Найдите максимальное натуральное число N такое, что число N! представимо в виде произведения N−3 последовательных натуральных чисел.

Задачу решили: 81
всего попыток: 121
Задача опубликована: 21.02.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Сколько существует натуральных чисел, кубы которых не представимы в виде разности квадратов двух целых чисел?

Задачу решили: 91
всего попыток: 170
Задача опубликована: 11.03.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?

Задачу решили: 83
всего попыток: 104
Задача опубликована: 23.03.11 08:00
Прислал: ZARIF img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: azat

Пусть I — точка пересечения биссектрис прямоугольного треугольника ABC. Обозначим через K, L и M точки, симметричные точке I относительно сторон треугольника ABC. Окружность, описанная около треугольника KLM, проходит через вершину B. Сколько градусов составляет угол ABC?

Задачу решили: 79
всего попыток: 168
Задача опубликована: 28.03.11 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?

Задачу решили: 75
всего попыток: 127
Задача опубликована: 30.03.11 08:00
Прислала: glorius_May img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).

Задачу решили: 65
всего попыток: 99
Задача опубликована: 13.05.11 08:00
Прислала: Marishka24 img
Источник: Канадская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.