img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 198
всего попыток: 269
Задача опубликована: 03.07.09 22:37
Прислал: Rep img
Источник: Ростовская областная математическая олимпиада...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.

Задачу решили: 178
всего попыток: 391
Задача опубликована: 08.07.09 00:31
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!

Задачу решили: 147
всего попыток: 205
Задача опубликована: 08.07.09 00:31
Прислал: demiurgos img
Источник: А.К.Толпыго "1000 задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.

Задачу решили: 272
всего попыток: 297
Задача опубликована: 10.07.09 19:58
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, задачник9-11"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.

Задачу решили: 151
всего попыток: 274
Задача опубликована: 13.07.09 00:38
Прислал: Rep img
Источник: Всесоюзная олимпиада школьников по математике...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)

Задачу решили: 129
всего попыток: 277
Задача опубликована: 16.07.09 00:35
Прислал: twister img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?

Задачу решили: 133
всего попыток: 154
Задача опубликована: 19.07.09 20:50
Прислал: Rep img
Источник: "Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).

Задачу решили: 202
всего попыток: 345
Задача опубликована: 26.07.09 00:35
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Сколько различных решений имеет уравнение:  24x6−4x5−78x4+29x3+56x2−42x+8=0?

Задачу решили: 177
всего попыток: 323
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?

Задачу решили: 180
всего попыток: 231
Задача опубликована: 28.07.09 18:12
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, 9-11"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.