Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
33
Определителем таблицы из 9-и чисел: Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.
Задачу решили:
38
всего попыток:
48
Два равных квадрата пресекаются так, что полученные красный, желтый и оранжевый цвета занимают одинаковую площадь Найдите косинус угла α.
Задачу решили:
30
всего попыток:
95
В квадрате построена 13-звенная ломаная, концами которой являются его диагональные вершины и соседние звенья перпендикулярны. Длины её звеньев – это целые числа от 1 до 13. В каком отношении эта ломаная делит площадь квадрата? В ответе укажите отношение площади желтой части к зеленой.
Задачу решили:
31
всего попыток:
37
В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ. Найти отношение площадей квадратов KL MN и DPRQ.
Задачу решили:
27
всего попыток:
30
В равностороннем треугольнике АВС с длиной стороны равной 1 проведена медиана BD и в треугольнике ABD медиана DE. Далее из вершины В в треугольниках ABD, BCD проведены биссектрисы до пересечения с медианой DE в точке F и с центром O вписанной окружности в треугольник BCD. Найти квадрат длины отрезка FO.
Задачу решили:
29
всего попыток:
35
Меньший треугольник равносторонний. Найдите отношение площади меньшего треугольника к площади большего.
Задачу решили:
30
всего попыток:
73
Меньший треугольник равносторонний. Найдите отношение площади шестиугольника к площади большего теругольника.
Задачу решили:
27
всего попыток:
36
В равнобедренном треугольнике ABC с основанием AC=10, высотой BD=10 вписаны квадраты KLMN и DPRQ. Если треугольник ABC перегнуть по высоте BD, то треугольники ABD и BDC совпадут при наложении, а квадраты частично перекроются. Найдите площадь общей части квадратов KLMN и DPRQ в этом случае.
Задачу решили:
32
всего попыток:
43
В треугольнике одна из сторон равна 7, а длины двух других относятся друг к другу как 25:24. Найти наибольшую возможную площадь треугольника.
Задачу решили:
24
всего попыток:
32
Дана ломаная M0M1M2M3M4M5M6M7. Все углы M0M1M2, M1M2M3, ..., M5M6M7 равны. Их величина такая, что, если бы все звенья были одинаковой длины, то ломаная была бы замкнута, образуя правильный семиугольник. Однако, длины звеньев другие: |M0M1| = 5 Соединив отрезком крайние точки M7 и M0, получим восьмиугольник. Найдите размер его наименьшего угла в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|