img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 346
Задача опубликована: 07.04.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.

Задачу решили: 215
всего попыток: 242
Задача опубликована: 09.04.10 08:00
Прислал: Shuvalov555 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Сумма двух чисел равна 480. Если у первого числа зачеркнуть последнюю цифру, то получится второе число, делённое на 7. Найдите эти числа. (В ответе укажите первое число.)

Задачу решили: 135
всего попыток: 315
Задача опубликована: 12.04.10 08:00
Прислал: Yhlas img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Найдите последние три цифры числа .

Задачу решили: 101
всего попыток: 124
Задача опубликована: 16.04.10 08:00
Прислал: kompashka img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mangoost (Сергей Савинов)

Найдите чётное 16-значное число, квадрат которого оканчивается на само это число. (Пример такого нечётного трёхзначного числа: 6252=390625.)

(Присланная задача была усложнена администрацией...)
Задачу решили: 226
всего попыток: 250
Задача опубликована: 19.04.10 08:00
Прислала: IrineK img
Источник: по Я.И.Перельману
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Водитель автомашины грубо нарушил правила дорожного движения, чему свидетелями стали три студента-математика. Номер они не запомнили, но сообщили следующее: 1) номер был четырехзначный; 2) две первые цифры были одинаковы; 3) две последние цифры также были одинаковы; 4) это четырёхзначное число являлось точным квадратом. Помогите сотрудникам автоинспекции понять математиков и определите номер машины.

Задачу решили: 71
всего попыток: 209
Задача опубликована: 17.05.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?

Задачу решили: 81
всего попыток: 131
Задача опубликована: 21.06.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Найдите наименьшее натуральное число, не делящееся на 11, и такое, что при замене любой его (но только одной) цифры на любую цифру, отличающуюся от выбранной на 1, получается число, делящееся на 11. (Например, число 10 этому условию не удовлетворяет: 11 делится на 11, 00=0 тоже, а вот 20 — нет!) 

(Физико-мамематический лицей №239)
Задачу решили: 99
всего попыток: 123
Задача опубликована: 16.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?

Задачу решили: 79
всего попыток: 153
Задача опубликована: 26.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n213n+47, если n пробегает все целые числа от −20102010 до 20102010?

Задачу решили: 68
всего попыток: 156
Задача опубликована: 28.07.10 08:00
Прислала: Marishka24 img
Источник: Межвузовская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.