Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
186
всего попыток:
317
В некоем городке некоторые жёны изменяют своим мужьям. Городок маленький: все про всех всё знают, но ни один муж не знает, верна ли ему его собственная жена или нет, — нравы там таковы, что никто никогда ни с кем своих жён не обсуждает. Если же обманутый муж вдруг узнаёт, что жена ему неверна, он втайне лупцует её под покровом первой же ночи, но к полудню весть о свершившемся наказании облетает весь городок. Таковы уж нравы и обычаи, но все давно уже живут тихо-мирно — как-то так уж сложилось, что обманутые мужья, если что-то и подозревают, то проверить ничего не могут. Но как-то днём на общем празднике сильно выпивший молодой человек вдруг воскликнул (и слышали это все мужья): "Друзья, среди наших жён есть неверные!" Его подняли на смех, поскольку это и так все знали. И всё по-прежнему было тихо-мирно, но через 14 ночей вдруг выяснилось, что все неверные жёны примерно наказаны, причём именно в 14-ую ночь после праздника. Как обманутые мужья убедились в измене своих жен? Как могла нулевая информация изменить сложившуюся ситуацию — в самом деле, годами жили себе тихо-мирно, потом кто-то сказал вслух то, что и так все знали, и на тебе... В ответе введите число неверных жён.
Задачу решили:
111
всего попыток:
499
На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.)
Задачу решили:
196
всего попыток:
292
На доске выписаны два числа 22009 и 52009 (в десятичной записи). Сколько всего цифр на доске?
Задачу решили:
73
всего попыток:
215
Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|