img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 20
Задача опубликована: 05.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Кривая дракона, петляя по плоскости, иногда образовывает замкнутые клетки, равные единичным квадратам. На рисунке, кривая дракона после шести итераций ограничивает 11 таких клеток.

Кривая дракона в прямоугольнике

Сколько таких клеток ограничивает кривая дракона после 13 итераций?

(подробней о кривой дракона см. задачу 2485).

Задачу решили: 13
всего попыток: 14
Задача опубликована: 17.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций.

Кривая дракона в прямоугольнике - 2

Эта ломаная помещается в наименьший прямоугольник размером 3х4 и площадью 12. Какова площадь наименьшего прямоугольника, в котором помещается такая кривая после 11 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Задачу решили: 11
всего попыток: 13
Задача опубликована: 29.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°.

Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций.

Клетки кривой дракона – 2

Она образовала 3 замкнутых единичных квадрата. Сколько замкнутых единичных квадратов будет образовано после 11 итераций?

+ 2
  
Задачу решили: 18
всего попыток: 22
Задача опубликована: 26.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

Куб 9х9х9, изображенный на рисунке справа, составлен из единичных кубиков. Эти кубики раскрашены в два цвета так, что некоторые из них образуются трехмерные кресты с общим центром (см. рис.).

Куб 29х29х29

Торцы крестов – это квадраты 1х1, 3х3, 5х5, …, которые составлены из квадратных рамок, чередующихся по цвету. Сколько синих кубиков в кубе 29х29х29, раскрашенного по такому же принципу?

Задачу решили: 21
всего попыток: 29
Задача опубликована: 14.08.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100?

Треугольник и прямые

Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.

Задачу решили: 6
всего попыток: 21
Задача опубликована: 13.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?

Задачу решили: 18
всего попыток: 20
Задача опубликована: 18.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 1680 и 2533
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?

Треугольник и прямые – 2

На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.

Задачу решили: 19
всего попыток: 20
Задача опубликована: 04.10.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Стороны правильного треугольника со стороной n, где nN, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?



На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 20.10.23 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок).

Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам.

За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)?

На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета).

Живописцы, окуните ваши кисти

В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.

Задачу решили: 24
всего попыток: 25
Задача опубликована: 27.10.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Определить сумму всех натуральных чисел x, для которых число 1 + x + x2 + x3 + x4 + x5 + x6 + x7 является степенью простого числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.