Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
47
В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.
Задачу решили:
32
всего попыток:
35
Найдите многочлен наименьшей степени с целыми коэффициентами и коэффициенте 1 при старшей степени, корнем которого явлется число 21/2+31/2. В качестве ответа введите сумму его коэффициентов.
Задачу решили:
29
всего попыток:
36
Учитель дал детям три задачи: A, B, C. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу A, но решивших B, в два раза больше, чем решивших C. Школьников, решивших только задачу A, на одного больше, чем остальных школьников, решивших задачу A. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу A?
Задачу решили:
31
всего попыток:
32
На олимпиаде, которая длилась n дней, было вручено m медалей. В первый день была вручена одна медаль и еще 1/7 от оставшихся m-1 медалей. Во второй день были вручены две медали и еще 1/7 от оставшихся после этого медалей и т. д. Наконец, в n-й день были вручены оставшиеся n медалей. Сколько было всего медалей вручено?
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Задачу решили:
26
всего попыток:
30
В тетраэдре одно и только одно ребро имеет длину более 1. Найдите максимально возможные объем тетраэдра.
Задачу решили:
23
всего попыток:
33
Найдите максимальный радиус сферы, которую можно поместить в каждый тетраэдр, все высоты которого больше 1.
Задачу решили:
31
всего попыток:
36
Для действительных x, y, z, t верны соотношения Найдите сумму x+y+z+t.
Задачу решили:
28
всего попыток:
35
В системе уравнений:
Задачу решили:
32
всего попыток:
53
Пусть x, y и z - целые числа и x/(y + z) + y/(z + x) + z/(x + y) = 4. Найдите наименьшее положительное значение x+y+z.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|