Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
226
всего попыток:
562
– А у тебя дети есть? – Три дочери. – Сколько им лет? – Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже. – Этой информации мне недостаточно... – А если сложить, то получится сегодняшнее число. Поразмыслив: – И этой информации мне недостаточно... – Средняя похожа на меня. – Вот теперь я знаю ответ на свой вопрос. Сколько лет средней дочери?
Задачу решили:
194
всего попыток:
259
У каждого из чисел от 1 до миллиарда подсчитывается сумма его цифр. Затем у каждого числа из получившегося миллиарда чисел снова подсчитывается сумма его цифр и т. д., пока не получится миллиард однозначных чисел (цифр). Каких чисел получится больше других?
Задачу решили:
111
всего попыток:
499
На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.)
Задачу решили:
196
всего попыток:
292
На доске выписаны два числа 22009 и 52009 (в десятичной записи). Сколько всего цифр на доске?
Задачу решили:
73
всего попыток:
215
Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.
Задачу решили:
81
всего попыток:
119
Автобусный билет называется счастливым, если сумма трёх первых цифр его шестизначного номера равна сумме трёх последних цифр. Доказать, что сумма номеров всех счастливых билетов делится на 13.
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|