img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 20
всего попыток: 56
Задача опубликована: 28.11.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На плоскости отмечены N точек. Любые три из них образуют треугольник, величины углов которого в градусах выражаются натуральными числами. При каком наибольшем N это возможно?

Задачу решили: 22
всего попыток: 25
Задача опубликована: 02.12.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Через концы меньшего основания трапеции проведены две параллельные прямые,пересекающие большее основание. Диагонали трапеции и эти прямые разделили трапецию на семь треугольников и пятиугольник. Площади двух треугольников,прилежащих к боковым сторонам равны 60 и 87, площадь треугольника, прилежащего к меньшему основанию равна 105. Найти отношение площади этого треугольника к площади пятиугольника. 

Задачу решили: 24
всего попыток: 30
Задача опубликована: 09.12.22 00:08
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Найдите количество хорд с концами в целочисленных точках параболы y = x2 при |x| <= 9*12 (=108)? В ответе укажите это количество хорд, делённое на 12.

P.S. С Днем Рождения, Николай Иванович!

Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.12.22 00:08
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz

Пусть положительные действительные числа a ≥ b ≥ c такие, что 2b/(b+c) + a/c + 2c/(a+c) = 17. Найдите максимум a/(b+c)+b/(c+a).

Задачу решили: 23
всего попыток: 30
Задача опубликована: 16.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите количество целых решений уравнения:
x2022+(2022!+1!)x2021+(2021!+2!)x2020+ ... + (1!+2022!)=0, где n!=1*2*...*n.

Задачу решили: 25
всего попыток: 42
Задача опубликована: 19.12.22 00:08
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Известно, что 
3\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c}, где a, b, c - натуральные числа. Найти a+b+c.

Задачу решили: 22
всего попыток: 34
Задача опубликована: 23.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz

Целочисленная функция f(x) (f: Ν+ → N+) такая, что 0 < f(a) < f(b) для всех a < b и f(f(x)) = 3x. Найдите f(2023)+f(2022)+f(2021)-3f(2020).

Задачу решили: 22
всего попыток: 37
Задача опубликована: 26.12.22 00:08
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На гипотенузе АВ треугольника АВС во внешнюю сторону построен квадрат ABDE. Отношение длин катетов ВС:АС=1:2. Прямая CD пересекает отрезок АВ в точке К . Прямая, перпендикулярная к CD, проведенная через точку К пересекает отрезок АЕ в точке М. Найти отношение длин отрезков АМ/МЕ.

Задачу решили: 28
всего попыток: 31
Задача опубликована: 28.12.22 00:08
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На катетах треугольника АВС (АС=12, ВС=5) построены во внешнюю сторону квадраты АСKL и BCMN. Прямые BL и AN, пересекаясь между собой в точке R, пересекаются соответственно с катетами АС и ВС в точках P и Q. Найти модуль разности площадей четырехугольника CPRQ и треугольника ABR.  

Задачу решили: 21
всего попыток: 30
Задача опубликована: 04.01.23 00:08
Прислал: solomon img
Источник: solomon
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Прямоугольная трапеция с целочисленными основаниями с вписанной окружностью и с целочисленным радиусом такова, что она равновелика квадрату с целочисленной стороной. При этом известно, что длина малого основания трапеции является простым числом. Найти сумму длин сторон первых трех таких квадратов (по возрастанию).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.