Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
33
На стороне АВ правильного восьмиугольника ABCDEFGH во внешную сторону построен квадрат ABKL. Две диагонали HD и FC пересекаются в точке О. Найти угол LOK в градусах.
Задачу решили:
26
всего попыток:
32
Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
25
всего попыток:
35
Треугольник со стороной 19 и двумя прилежащими к ней углами, один из которых в два раза больше другого, имеет целочисленные стороны. Найти отношение суммы длин двух неизвестных сторон к длине известной стороны.
Задачу решили:
20
всего попыток:
60
Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
Задачу решили:
37
всего попыток:
53
Найти две последние цифры значения выражения 1100+2100+3100+...+100100.
Задачу решили:
28
всего попыток:
29
Пусть p - простое число, а n - целое положительное число и
Задачу решили:
28
всего попыток:
31
Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|