Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
178
всего попыток:
391
Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!
Задачу решили:
147
всего попыток:
205
Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.
Задачу решили:
272
всего попыток:
297
В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.
Задачу решили:
151
всего попыток:
274
Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)
Задачу решили:
129
всего попыток:
277
Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?
Задачу решили:
133
всего попыток:
154
Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
180
всего попыток:
231
Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.
Задачу решили:
52
всего попыток:
187
Перед двумя игроками 5 кучек из спичек: в первой — 7, во второй — 10, в третьей — 18, в четвёртой — 19 и в пятой — 24 спички. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из одной или двух кучек по своему выбору — например, можно взять только одну спичку, а можно и все спички из двух кучек, но вообще не брать спичек или брать спички из трёх разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из каких кучек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите общее количество взятых спичек.
(Эта игра очень похожа на "Игру в спички II"; единственное отличие — там разрешалось брать спички только из одной кучки, а здесь можно и из двух.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|