img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 69
всего попыток: 128
Задача опубликована: 23.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

В треугольнике ABC с площадью 72 один из углов равен 60°, а радиус описанной окружности в 3 раза больше радиуса вписанной, которая касается сторон треугольника в точках K, L и M. Найдите площадь треугольника KLM.

Задачу решили: 100
всего попыток: 389
Задача опубликована: 28.06.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?

Задачу решили: 100
всего попыток: 214
Задача опубликована: 09.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

На окружности отмечены 15 различных точек. Некоторые из них соединены отрезками. Из первой точки выходит один отрезок, из второй — два, из третьей — три, и так далее, вплоть до 14-й точки, из которой выходят 14 отрезков. Какое наибольшее число отрезков может выходить из 15-й точки?

Задачу решили: 99
всего попыток: 123
Задача опубликована: 16.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?

Задачу решили: 163
всего попыток: 284
Задача опубликована: 19.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)

Задачу решили: 90
всего попыток: 436
Задача опубликована: 23.07.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 79
всего попыток: 153
Задача опубликована: 26.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n213n+47, если n пробегает все целые числа от −20102010 до 20102010?

Задачу решили: 68
всего попыток: 156
Задача опубликована: 28.07.10 08:00
Прислала: Marishka24 img
Источник: Межвузовская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.

Задачу решили: 46
всего попыток: 57
Задача опубликована: 06.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?

(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Задачу решили: 126
всего попыток: 268
Задача опубликована: 13.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.