img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 26
всего попыток: 32
Задача опубликована: 15.07.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.

Задачу решили: 30
всего попыток: 38
Задача опубликована: 25.07.22 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно.

Шестиугольник в четырехугольнике

Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.

Задачу решили: 22
всего попыток: 26
Задача опубликована: 29.07.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение:
((a+b+c)/2)2 - 3r2 - 12Rr, можно представить как многочлен от трёх переменных a, b, c.

Обозначим:
B - произведение коэффициентов этого многочлена.
A - сумма абсолютных величин этих же коэффициентов.
Найдите A+B.

Задачу решили: 30
всего попыток: 42
Задача опубликована: 05.08.22 08:00
Прислал: admin img
Вес: 5
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.

Задачу решили: 25
всего попыток: 35
Задача опубликована: 08.08.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Треугольник со стороной 19 и двумя прилежащими к ней  углами, один из которых в два раза больше другого, имеет целочисленные стороны. Найти отношение суммы длин двух неизвестных сторон к длине известной стороны.

Задачу решили: 20
всего попыток: 60
Задача опубликована: 10.08.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
1. n не имеет простых делителей, отличных от 3, 7, 13.
2. Существует ровно 22 решения в целых числах уравнения:
1/x + 1/y = 1/n (0 < x < y).

Задачу решили: 37
всего попыток: 53
Задача опубликована: 12.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти две последние цифры значения выражения 1100+2100+3100+...+100100.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 22.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть p - простое число, а n - целое положительное число и
(p−4)(p+1)(p+3)=(n−4)(n+4). Найдите сумму всех p.

Задачу решили: 28
всего попыток: 31
Задача опубликована: 02.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: aaa_uz

Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.